Control of a nonlinear ice cream crystallization process

Céline Casenave * Denis Dochain ** Graciela Alvarez ***
Marcela Arellano *** Hayat Benkhelifa *** Denis Leducq ***

* MODEMIC project-team, INRA/INRIA, 2 place Pierre Viala, 34060 Montpellier, France (e-mail: celine.casenave@supagro.inra.fr).
** ICTEAM, UCL, 4 avenue Georges Lemaître 1348 Louvain-la-Neuve, Belgium (e-mail: denis.dochain@uclouvain.be)
*** IRSTEA, 1 rue Pierre-Gilles de Gennes, 92160 Antony, France (e-mail: {graciela.alvarez, marcela.arellano, denis.leducq}@irstea.fr)
**** AgroParisTech, UMR n° 1145 Ingénierie-Procédés-Aliments, 16 rue Claude Bernard, 75231 Paris Cedex 05, France. (e-mail: hayat.benkhelifa@agroparistech.fr)

Abstract: In the ice cream industry, the type of final desired product (large cartons (srounds) or ice creams on a stick) determine the viscosity at which the ice cream has to be produced. One of the objectives of the ice cream crystallization processes is therefore to produce an ice cream of specified viscosity. In this paper, a nonlinear control strategy is proposed for the control of the viscosity of the ice cream in a continuous crystallizer. It has been designed on the basis of a reduced order model obtained by application of the method of moments, on a population balance equation describing the evolution of the crystal size distribution. The control strategy is based on a linearizing control law coupled with a Smith predictor to account for the measurement delay. It has been validated on a pilot plant located at IRSTEA (Antony, France).

1. INTRODUCTION

Crystallization is prominent in the process industry nowadays, in particular in the micro-electronic pharmaceutical and food industries (??). In crystallization processes, an important challenge is to control the properties of the final product. These properties (as for example in the pharmaceutical industry, the bioavailability and the shelf-life) are often directly linked to the characteristics of the crystals. In particular, the product efficiency and quality depend on the shape of the crystals and on the one of the crystal size distribution (CSD). The control of the shape of the CSD has therefore appeared essential in crystallization processes and has lead to the development of numerous control strategies both in batch and continuous crystallizers (???). Some of the properties of the product do not depend on the whole CSD, but only on some related quantities, as for example the moments of the CSD, the control of which has also been studied in several papers (??).

In ice cream crystallization, it is well known that the quality of the product, that is the hardness and the texture of the ice cream, depends on the CSD. Indeed, an ice cream with a narrow ice CSD and a small mean ice crystals size is smoother and more palatable. But it can also be interesting, in a production point of view, to control other properties of the ice cream, as its viscosity. Indeed, the ice cream market is characterized by a variety of products that can be classified in particular in term of their final packaging. Each type of final product is characterized by a specified viscosity: for instance a lower viscosity is required for large carton packaging than for cones. One of the objectives of ice cream crystallization processes is therefore to produce an ice cream of specified viscosity.

The viscosity of the ice cream can be expressed as a function of the ice temperature and the third moment of the ice CSD. As a consequence, it is not necessary to control the shape of the CSD itself: we only need to control the third moment. A model that describes the evolution of this moment can be achieved from a population balance equation (PBE) (??) describing the evolution of the CSD. By applying the method of moments, the PBE is transformed in a set of ordinary differential equations (ODEs). This system is coupled with an energy balance equation, and an equation of the dynamic of the compressor of the crystallizer. As the first four moment equations are independent of the ones of lower order, and as the energy balance equation only involves moments of order 3 or less, the system we consider is reduced to a set of 6 ODEs.

In this paper, a nonlinear control strategy is proposed for the control of the viscosity of the ice cream in a continuous crystallizer. It is based on a linearizing control law coupled with a Smith predictor to account for the measurement delay, as in the general approach proposed in ?? for the control of particulate processes. The control strategy has been validated on a pilot plant located at IRSTEA (Antony, France).

* This work was supported by the 7th Framework Program of the European Union: CAFE Project (Computer-Aided Food processes for control Engineering project) - Large Collaborative Project KBBE-2007-2-3-01.
2. PROCESS DESCRIPTION

2.1 Pilot plant

The pilot plant is located at IRSTEA Antony (France). The ice cream crystallizer is a 0.40 meter long cylindrical scraped surface heat exchanger, with inner diameter of 0.05 meter. The mix sorbet, which is mainly composed of sugar, gum and water, is first put in a mix storage tank which is refrigerated at a temperature \(T_0 \) of 5°C. The mix sorbet is then conducted in the crystallizer by a piston pump with a mass flow rate denoted \(m_{fr} \). Within the vessel jacket of the crystallizer, a refrigerant fluid, whose evaporation temperature \(T_e \) is called the evaporation temperature, is continually vaporizing to cool down the mix sorbet. When the temperature of the mix sorbet gets smaller than a threshold temperature called the saturation temperature, and denoted \(T_{sat} \), the crystallization occurs. Some ice crystals appear at the inner wall of the cylinder and are scraped by two scraper blades which turn with a rotation speed denoted \(N_{scrap} \) and so mix the ice.

The evaporation temperature \(T_e \) can be varied from \(-10°C\) to \(-25°C\) through a compressor with rotation speed \(V_{comp} \). The dasher rotation speed can be varied from 300 to 1000 rpm and the mix flow rate \(m_{fr} \) from 20 to 100 kg h\(^{-1}\).

![Fig. 1. Scheme of the freezer](image)

2.2 Available measurements

Two variables are accessible for on-line measurement: the outlet temperature \(T \) of the ice cream and the evaporation temperature \(T_e \). The temperature \(T \) is measured at some distance of the reactor outlet, and can be reasonably considered to be equal (at this measurement point) to the saturation temperature \(T_{sat} \). Indeed the temperature inside the freezer has to be lower than the saturation temperature so that the crystallization can proceed. When the ice leaves the reactor through a non refrigerated pipe, the temperature of the ice increases to reach the saturation temperature value.

Note that the location of the measurement point at some distance of the reactor generates measurement delay. By denoting \(T_{sat}^m \) the temperature measurement, we have:

\[
T_{sat}^m(t) = T_{sat}(t-d) + \varepsilon_T
\]

where \(T_{sat} \) is the saturation temperature of the ice at the outlet of the freezer, \(d \) is the measurement delay and \(\varepsilon_T \) is the measurement error.

3. MODEL DESCRIPTION AND VALIDATION

3.1 Model of the process

The model considered here is a set of 6 energy and mass balance equations; it is written:

\[
dM_0 = -DM_0 + N + BM_1
\]

\[
dM_1 = -DM_1 + GM_0 + NL_{C} + c_1BM_2
\]

\[
dM_2 = -DM_2 + 2GM_1 + NL_{C} + c_2BM_3
\]

\[
dM_3 = -DM_3 + 3GM_2 + NL_{C}
\]

\[
\frac{dT}{dt} = -D(T_0 - T) + K_2(T_e - T) + \mu N_{scrap}K_3 + K_1(3GM_2 + NL_{C})
\]

where:

- \(M_i \) is the \(i^{th} \) order moment defined by:

\[
M_i = \int_0^\infty L^i \psi(t,L) dL,
\]

with \(L \) the crystal size variable and \(\psi(t,_,L) \) the crystal size distribution at time \(t \), at the outlet of the freezer;

- \(T \) (respectively \(T_0 \)) is the temperature of the ice at the outlet (respectively at the inlet) of the freezer;

- \(T_e \) is the evaporation temperature;

- \(D \) is the dilution rate, which is proportional to the inlet mass flow rate \(m_{fr} \)

\[
(D = \frac{\nu_{fr}}{\rho V}, \text{ with } \rho \text{ and } V \text{ the mix density and the crystallizer volume, respectively});
\]

- \(N_{scrap} \) is the dasher rotation speed;

- \(V_{comp} \) is the compressor rotation speed;

- \(\mu = \mu(M_3,T) \) is the viscosity of the ice, which is assumed to depend only on \(M_3 \) and \(T \);

- \(T_{sat} = T_{sat}(M_3) \) is the saturation temperature, that is the threshold temperature below which the ice crystalizes (on the contrary, the ice is melting behind this value). It is assumed to depend only on \(M_3 \);

- \(G \) and \(N \) are the growth and nucleation rates, respectively, expressed by\(^1\) \((?)\):

\[
G(M_3,T) = \beta(T_{sat}(M_3) - T),
\]

\[
N(M_3,T) = \alpha S(T_{sat}(M_3) - T_e)^2,
\]

where \(\alpha, \beta \) are some kinetic parameters and \(S \) is a constant depending on the size of the freezer;

\(^1\) Only heterogeneous nucleation at the freezer wall is considered.
• B is a breakage constant, assumed to be proportional to N_{scrap}; $B = \epsilon N_{\text{scrap}}$;

• $G^c = G^c(V_{\text{comp}}, m_{\text{fr}}, N_{\text{scrap}})$ is the nonlinear gain of the T_e dynamic; it is assumed to depend on $V_{\text{comp}}, m_{\text{fr}}$ and N_{scrap};

• K_1, K_2 and K_3 are some constant parameters depending on the ice and the device, τ_e is the T_e dynamic time constant, $c_1 = 2s^{-1}$ and $c_2 = 2s^{-1}$.

Remark 1. M_0, M_1, M_2 and M_3 represent the number of particles, the sum of characteristic lengths and the images of the total area and volume of the crystals per cubic meter at the outlet of the freezer respectively. Their respective units are $[m^{-3}], [m^{-2}], [m^{-1}]$ and $[-]$.

The first part of the model (equations (2) to (6)) has been developed by research teams of AgroParisTech and IRSTEA Antony (France) and has been validated, at equilibrium, on experimental data obtained from the pilot plant; it is described in ?? . This model has been obtained by reduction of a more complex one, composed of a population balance equation (PBE) of the crystal size distribution coupled with an energy balance equation. The PBE considers transport, crystal growth, nucleation and breakage. Under some hypotheses on the breakage term and by application of the method of moments, the PBE has been transformed in a closed set of 5 ordinary differential equations.

In ?, the steady-states analysis of this part of the model has been performed.

As for the equation of T_e, it describes the dynamic of the compressor which behaves like a first order system with a nonlinear gain (see ?).

3.2 Parameter identification

Model (2-7) includes several parameters whose values have to be adjusted. Concerning the 5 first equations of the model, an initial parameter values set is given in ???. From this parameters set, a sensitivity analysis has been performed: the 2 parameters K_2 and K_3 have been identified as the more sensitive parameters of these equations. Then the values of these parameters have been optimized in a least squares sense to fit the data at best: a simplex method was used to minimize the distance between experimental data and simulated trajectories.

The function G^c of the equation of T_e has been identified from experimental data at equilibrium. The time constant τ_e has been optimized in a least squares sense from experimental data.

In figure 2, some trajectories obtained by simulation of the model with the optimized parameter values set are compared with some experimental data. The first one (in solid line) is obtained by simulation of the full system (2-6), whereas the second one (in dotted line) is obtained by simulation of the following reduced order model:

$$
\begin{align*}
\frac{dM_3}{dt} &= -DM_3 + 3G^c M_3 \frac{M_3}{L_{\text{mean}}} + NL_3^c, \\
\frac{dT}{dt} &= D(T_0 - T) + K_2(T_e - T) + \mu N_{\text{scrap}}^2 K_3 + K_1 \left(3G^c M_3 \frac{M_3}{L_{\text{mean}}} + NL_3^c \right),
\end{align*}
$$

in which the parameter L_{mean} has also been identified. This model has been obtained from the full model (2-6) in which M_2 has been approximated from the value of M_3 by:

$$
M_2 \approx \frac{1}{L_{\text{mean}}} \int_0^\infty L^3 \psi(t, L) dL = \frac{1}{L_{\text{mean}}} M_3,
$$

where L_{mean} stands for the mean value of L. The parameters and functions used for the simulations are given hereafter.

The expression of T_{sat} (in $[\degree C]$) is given by (see ?):

$$
T_{\text{sat}} = -7.693\omega + 8.64\omega^2 - 70.053\omega^3
$$

with $\omega = \frac{\omega_0}{1 - \rho \nu} [-], \phi = \frac{\pi}{6} M_3 [-], \omega_0 = 0.25 [-], \rho = 0.9091 [-]$.

The expression of the viscosity (in $[Pa.s]$) has been obtained empirically: it is given by (see ?? ?):

$$
\mu(M_3, T) = \mu_{\text{mix}} \left(1 + 2.5 \phi_1 + 10.5 \phi_1^2 + 0.9555 e^{16.6 \phi_1} \right)
$$

with $\mu_{\text{mix}} = 39.10^{2-9} \times (\gamma_{\text{pav}}^{0.600-1} \epsilon \frac{\pi^3 M_3}{2.5 \times 10^2})^{5.557}$,

where $\gamma_{\text{pav}} = 12.57 \times N_{\text{scrap}}^c [s^{-1}]$.

The other parameters are given hereafter:

$$
D = 1.813 \times 10^{-7} \times m_{\text{fr}} [s^{-1}] ; N_{\text{scrap}} = 12.5 [r.s^{-1}] ; \beta = 5 \times 10^{-7} [m.s^{-1}.K^{-1}] ; \alpha S = 1.355 \times 10^{11} [m^{-3}.s^{-1}.K^{-1}] ; \epsilon = 20 [m^{-1}] ; L_c = 5 \times 10^{-4} [m] ; L_{\text{mean}} = 1.676 \times 10^{-3} [m] ; T_0 = 5 [\degree C] ; d = 50 [s] ; K_1 = 44.61 \times K ; K_2 = 0.0775 [s^{-1}] ; K_3 = 5.27810^{-6} [-].
$$

For the equation of T_e, the parameter τ_e is taken equal to:

$$
\tau_e = 30 [s],
$$

and the function G^c is given by:

$$
G^c(V_{\text{comp}}, m_{\text{fr}}, N_{\text{scrap}}) = -6.855 + 2.185 \times 10^2 m_{\text{fr}} - 1.346 \times 10^{-1} N_{\text{scrap}} - 1.122 V_{\text{comp}} - 2.770 \times 10^3 m_{\text{fr}}^2 + 9.562 \times 10^{-3}N_{\text{scrap}}^2 + 1.987 \times 10^{-2} V_{\text{comp}}^2.
$$

4. PRACTICAL SELECTION OF THE CONTROL VARIABLES

4.1 Controlled output

Recall that the objective is to control the viscosity μ of the product at the outlet of the freezer, or more precisely at the measurement point, located a bit further than the outlet of the freezer. At this measurement point, the temperature of the ice is close to the saturation temperature $T_{\text{sat}}(M_3)$. As μ is a function of the two variables T and M_3, we have, at the measurement point :

$$
\mu = \mu(M_3, T_{\text{sat}}(M_3)) = \mu(M_3).
$$

Therefore, the control of the product viscosity at the measurement point can be achieved via the control of the variable M_3 or of the saturation temperature $T_{\text{sat}}(M_3)$. Because a measurement of the saturation temperature is

2 We assume that a particle of size L is broken into two particles of the same length L. The volume of ice is considered unchanged by the fragmentation and a spherical shape is assumed (as in ?)

3 The method of moments consists in multiplying the population balance equation by L^i, and then in integrating it from $L = 0$ to $L = \infty$.

4 r stands for the rotations, and K for the Kelvin degrees. m_{fr} is given in kg/s.$^{-1}$.
available (which is not the case for \(M_3 \)), \(T_{\text{sat}} \) is chosen as the output to be controlled; we denote:

\[
y = T_{\text{sat}}(M_3)
\]

and \(y^* = T^*_{\text{sat}} \) the desired saturation temperature corresponding to a unique given value of the desired viscosity.

4.2 Control input selection

Three control inputs can be used to control the viscosity \(\mu \): the compressor rotation speed \(V_{\text{comp}} \) (linked to the evaporation temperature \(T_e \)), the mass flow rate \(m_r \) (linked to the dilution rate \(D \)), and the dasher rotation speed \(N_{\text{scrap}} \).

First of all, the absence of correlation between \(\mu \) and \(N_{\text{scrap}} \) has been exhibited experimentally. This lack of correlation is also a feature of the dynamical model (2)-(6). Indeed it has been assumed that when it breaks, a crystal divides itself in two crystals of same volume and that the total volume is conserved. As a consequence and as \(M_3 \) represents the total volume of the crystals per cubic meter, the breakage (and so \(N_{\text{scrap}} \)) does not influence the value of \(M_3 \) (and so of \(\tilde{\mu}(M_3) \)) a lot.

This can be seen in Table 1, where the influence of each of the possible control inputs on the value \(M_3^{eq} \) of \(M_3 \) at equilibrium has been evaluated in numerical simulations.

Secondly \(m_r \) is linked to the productivity of the system: it is so considered fixed in the sequel.

Finally, only \(V_{\text{comp}} \) is used to control \(T_{\text{sat}} \). More precisely, a cascade control is used with two control loops: a primary loop to control \(T_{\text{sat}} \) with \(T_e \), and a secondary loop to control \(T_e \) with \(V_{\text{comp}} \).

Let us denote in the following:

\[
u_1 = T_e, \quad u_2 = V_{\text{comp}}\]

5. DESIGN OF THE CONTROL LAWS

5.1 Linearizing control strategies

In order to take advantage of the system nonlinearities, a linearizing control law is considered to control \(T_e \) with \(V_{\text{comp}} \). The \(T_e \) equation has a relative degree equal to 1, and the function \(G^c \) can be decomposed as follows:

\[
G^c(V_{\text{comp}}, D, N_{\text{scrap}}) = G^c_1(V_{\text{comp}}) + G^c_2(D, N_{\text{scrap}}),
\]

with \(G^c_1 \) an invertible function (invertible on the interval of admissible physical values of \(V_{\text{comp}} \)). The control law is therefore written as follows:

\[
u_2 = (G^c_1)^{-1}(\tau_v v_2 + T_e - G^c_2(D, N_{\text{scrap}}))
\]

with \(\tau_v \) of the PID form (\(K_{p,2}, K_{d,2}, K_{i,2} \in \mathbb{R} \)):

\[
v_2 = K_{p,2}(T^*_e - T_e) + K_{d,2} \frac{dT_e}{dt} + K_{i,2} \int_0^t (T_e^c(\tau) - T_e(\tau)) \, d\tau.
\]

Similarly a linearizing control law is also considered to control \(T_{\text{sat}} \) with \(T_e \). Note that formally the equation of \(M_3 \) has a relative degree (with respect to \(u_1 = T_e \)) equal to 1, because \(N \) depends on \(u_1 \). However, the term depending on \(N \) has a very low sensitivity due to the very small value of \(L_e \) (the size at which the crystals are formed by nucleation) and can therefore be neglected. We indeed have the following result.

Proposition 2. By denoting \(X = (M_0, M_1, M_2, M_3, T)^T \) the vector of the first five state variables, and \(f_{M_2}, f_{M_3}, f_T \) and \(\frac{d}{dt} f_T^u \) the functions such that:

\[
\frac{dM_2}{dt} = f_{M_2}(X) + N L_e^3, \quad \frac{dM_3}{dt} = f_{M_3}(X) + N L_e^3.
\]

and

\[
\frac{dT}{dt} = f_T(X) + f_T^u(X) u_1 + K_1 N L_e^3,
\]

the equation of \(T_{\text{sat}}(M_3) \) is written \(^5\):

<table>
<thead>
<tr>
<th>(T_e)</th>
<th>(-20)</th>
<th>(-18)</th>
<th>(-16)</th>
<th>(-14)</th>
<th>(-12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_3^{eq})</td>
<td>(0.4114)</td>
<td>(0.3524)</td>
<td>(0.2898)</td>
<td>(0.2245)</td>
<td>(0.1576)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(N_{\text{scrap}})</th>
<th>(250)</th>
<th>(500)</th>
<th>(750)</th>
<th>(1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_3^{eq})</td>
<td>(0.3574)</td>
<td>(0.3552)</td>
<td>(0.3524)</td>
<td>(0.3490)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(m_r)</th>
<th>(25)</th>
<th>(35)</th>
<th>(45)</th>
<th>(55)</th>
<th>(65)</th>
<th>(75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_3^{eq})</td>
<td>(0.6678)</td>
<td>(0.6190)</td>
<td>(0.5573)</td>
<td>(0.4864)</td>
<td>(0.4157)</td>
<td>(0.3524)</td>
</tr>
</tbody>
</table>

Table 1. Sensitivity of the output \(M_3 \) at equilibrium to the different control inputs. In each table, only one control input is tested and only its value is changed; the others quantities are fixed at the following values: \(T_e = -18{^\circ}C \), \(N_{\text{scrap}} = 750 \) [rpm], \(m_r = 75 \) [kg.h\(^{-1}\)].

\(^5\) In the sequel, and for simplicity, we will denote \(G = G(M_3, T), N = N(M_3, u_1), \mu = \tilde{\mu}(M_3, T), T_{\text{sat}} = T_{\text{sat}}(M_3), T_{\text{sat}} = T_{\text{sat}}(M_3), T_{\text{sat}} = T_{\text{sat}}(M_3), T_{\text{sat}} = T_{\text{sat}}(M_3), T_0 = \frac{1}{N_0}.\)
\[\frac{d^2y}{dt^2} = a(X)u_1 + b(X) + o(L_c) \]

with: \(a(X) = 3M_2f_T^u(X)\frac{\partial G}{\partial T} T_{sat}^t \)

\[b(X) = (f_M^u(X))^2 T_{sat}^t + \left[-\left(D + 3\frac{\partial G}{\partial M_3} M_2 \right) f_M(X) \right] \]

\[+ \frac{3}{2} \frac{\partial G}{\partial T} f_T(X) M_2 + 3Gf_M(X) \] \(T_{sat}^t \).

Proof.

The result is obtained by simple computations from the fact that \(NL_c = \alpha(L_c^{-1}) \), \(j = 2 \rightarrow 3 \) and because:

\[\frac{d^2y}{dt^2} = T_{sat}^t \left(\frac{dM_3}{dt} \right)^2 + T_{sat}^t \left(-\frac{D}{M_3} \frac{dM_3}{dt} + 3G \frac{dM_2}{dt} \right) + \frac{3}{2} \frac{\partial G}{\partial M_3} \frac{dM_3}{dt} M_2 + 3G \frac{dM_2}{dt} M_2 + \frac{dN}{dt} L_c^t \).

Let us now analyze further the system dynamics and check whether the term \(NL_c \) can really be neglected in the equation of \(M_3 \). There are only two \(u_1 \)-dependent quantities in the model: \(N(M_3, u_1) \) which is present in each of the first 5 state equations, and \(K_2(u_1 - T) \) in the equation of \(T \). The influence of these quantities on the value \(M_3^a \) of \(M_3 \) at equilibrium has been evaluated in numerical simulations. The results are given in table 2. It shows that the sensitivity of \(M_3^a \) to \(T_e \) is essentially due to the term \(K_2(u_1 - T) \) of the equation of \(T \). In other words, the term \(N(M_3, u_1) L_c^t \) can be neglected in the equation of \(M_3 \) and the linearizing control law \(u_1 \) is therefore written:

\[u_1 = -\frac{b(X)}{a(X)} + \frac{v_1}{a(X)}, \] (19)

with \(v_1 \) of the form:

\[v_1 = K_{p,1} (y^* - y) + K_{d,1} \frac{dy}{dt} + K_{i,1} \int_0^t (y^*(\tau) - y(\tau)) d\tau. \] (20)

5.2 Simplifications of the control law expressions

In accordance with the experimental evidence, it can be assumed that, at each time instant, the \(u_1 \)-independent part of the instantaneous time variation of \(\frac{dy}{dt} \) (that is the quantity \(b(X) \)) is essentially due to the \(u_1 \)-independent part of the instantaneous time variation of \(T \) (that is \(f_T(X) \)). In other words it simply means, that, at each time instant, if the input \(u_1 \) is suddenly put at 0, then the variation of the saturation temperature will be modified for the most part because of the variation of the temperature \(T \) of the ice (and not because of the one of the moments which are not instantaneously affected by the variation of \(u_1 \)). This assumption can be expressed in the following way:

\[b(X) \simeq 3 \frac{\partial G}{\partial T} f_T(X) T_{sat}^t M_2. \] (21)

Note that this approximation has been verified in numerical simulations, for the identified parameter values set given before and for different realistic operating conditions. The numerical value of the neglected part of \(b(X) \) was 100 times smaller than the rest.

Under this assumption, and after computations, the control law \(u_1 \) given by (19) can then be written as follows:

\[u_1 \simeq -\frac{D(T_0 - T) + K_2 T - \mu N_{\text{scrap}}^2 K_3 - 3M_1 GM_2}{K_2} \]

\[- \frac{v_1}{3\beta M_2 K_2 T_{sat}^t}, \] with \(v_1 \) given by (20).

5.3 Estimation of the unknown quantities

To apply the control laws, the values of the dynamic quantities \(T_e, M_2, M_3, T \) and \(\frac{dy}{dt} \) are needed. However, only the saturation temperature and the evaporation temperature are measured. To estimate the other quantities, a state-observer could be used. However, state-observers can be pretty difficult to adjust and to initialize, especially when the system is of great dimension, and when the model is not accurate enough. The unknown quantities of the control laws are estimated here in a different way:

- As explained before, the measurement \(T_{sat}^m \) of \(T_{sat} \) is delayed. To compensate the delay, a Smith predictor based on the simplified model (11,12) is used as in ?.
- From the measurement \(T_{sat}^m \) of \(T_{sat} \), we can deduce an approximate value of \(M_3 \). Indeed, the function \(T_{sat} \) only depends on \(M_3 \) and is bijective. An estimate \(M_{3}^m \) of \(M_3 \) is so obtained by:

\[M_{3}^m = T_{sat}^{-1}(T_{sat}^m). \] (23)

- For \(M_2 \), we use the same approximation as the one used for the reduced model given in section 3.2, that is:

\[M_2 \simeq \frac{1}{L_{\text{mean}}} M_3, \] (24)

with \(L_{\text{mean}} \) the mean crystal size.

- The value of \(T \) at the outlet of the freezer stays close to the one of \(T_{sat} \) (see figure 2). The value of \(G \) is therefore small and the \(G \)-dependent term can be neglected.

- An estimate of \(\frac{dy}{dt} \) is deduced from the model and the fact that \(G \) and \(L_{\text{ce}} \)-dependent terms can be neglected:

\[\frac{dy}{dt} = -D M_3 T_{sat}^t. \]

Under these assumptions, the control law is finally given by:

\[u_1 \simeq -\frac{D(T_0 - T) - K_2 T + \mu N_{\text{scrap}}^2 K_3 - L_{\text{mean}}}{3\beta M_2 K_2 T_{sat}^t} v_1, \]

with \(v_1 \) given by:

\[v_1 = K_{p,1} (y^* - y) - K_{d,1} D M_3 T_{sat}^t + K_{i,1} \int_0^t (y^*(\tau) - y(\tau)) d\tau. \]

Remark 3. The initialization of the integral term will be chosen such that the value of the control \(u_1 = T_e \) will be equal to the one just before the control law is applied.

\[\text{More precisely, its restriction to the interval } [0, \frac{a}{T}] \text{ of admissible physical values of } M_3 \text{ is bijective.} \]
6. VALIDATION ON THE EXPERIMENTAL PROCESS

The control laws u_1 and u_2 have been tested and validated first on numerical simulations, and then on the experimental pilot plant described in section 2. Some experimental results\(^7\) are presented in figure 3. The mass flow rate m_{fr} was taken equal to 25 kg.h\(^{-1}\) and the scraper rotation speed N_{scrap} was equal to 655 [rpm], that is 10.92 [r.s\(^{-1}\)]. The values of the control law parameters used for this experiment are given here after:

\[
K_p,1 = 4.375 \times 10^{-2};\quad K_d,1 = -4.125 \times 10^{-1};\quad K_i,1 = 1.125 \times 10^{-3};
\]

\[
K_p,2 = 6 \times 10^{-2};\quad K_d,2 = 0;\quad K_i,2 = 9 \times 10^{-4}.
\]

On the first graph (top of the figure), the compressor rotation speed is given. In the second graph (center of the figure), the evaporation temperature setpoint and measurement are given. Bottom: saturation temperature setpoint, measurement and estimation (with the Smith predictor).

![Fig. 3. Experimental results obtained by application of the control laws u_1 and u_2 on the pilot plant. Top: compressor rotation speed. Center: evaporation temperature setpoint and measurement. Bottom: saturation temperature setpoint, measurement and estimation (with the Smith predictor).](image)

7. CONCLUSION

In this paper, a nonlinear cascade control strategy is proposed for the control of the ice cream viscosity at the outlet of a continuous crystallizer. The model considered is highly nonlinear because deduced from the modeling of the ice cream crystallization mechanism which is achieved by a population balance equation. Moreover, only two online measurements are available for the control and one of them is delayed. A linearizing control law coupled with a Smith predictor has so been designed. It has been validated first on numerical simulation and then on an experimental process. The next step will now consist in adding an online estimation of uncertain parameters, because some of them can vary from one experiment to another, or even during the same experiment.

REFERENCES

