Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

Kevin T. Smith a,⇑, Jean Christophe Balouet b, Walter C. Shortle a, Michel Chalot c,d, François Beaujard e, Håkan Grudd f, Don A. Vroblesky g, Joel G. Burken h

a Northern Research Station, USDA Forest Service, 271 Mast Road, Durham, NH 03824, United States
b Environment International, 2 ruelle du Hamet, 60129 Orrouy, France
c Laboratoire Chrono-Environnement, Université de Franche-Comté, 4 place Tharradin, BP 71427, 25 211 Montbeliard, France
d Université de Lorraine, Faculté des Sciences & Technologies, 54506 Vandoeuvre-les-Nancy Cedex, France
e UMR 547 PIAF, INRA-UBP, Site de Crouel, 5 chemin de Beaulie, 63039 Clermont-Ferrand Cedex 02, France
f Bolin Centre for Climate Research, Department of Physical Geography and Quaternary Geology, Stockholm University, SE-106 91 Stockholm, Sweden
g U.S. Geological Survey, Columbia, SC 29210, United States
h Missouri University of Science and Technology, Rolla, MO 65409, United States

HIGHLIGHTS

- We use EDXRF to identify trends in high-resolution cation distribution in tree rings.
- Potassium counts are elevated in sapwood and infected wood.
- Localized peaks in calcium counts can be associated with crystals in wood.
- Intra-annual variation in peak counts appears associated with ring boundaries.

1. Introduction

Dendrochemistry is the chemical analysis and interpretation of precisely dated tree rings. Interpretation of dendrochemical patterns begins with an understanding of wood structure and function. In cross-section, the wood of a mature stem of many familiar conifer and ring-porous tree species appears as an outer band of sapwood and an inner core of heartwood (Shigo and Hillis, 1973). All wood begins as sapwood, differentiated secondary xylem produced by mitosis of the vascular cambium. Most of the volume of sapwood consists of thick-walled tracheid and/or vessel cells. Tracheid and vessel differentiation involves programmed cell death that opens the cell lumens for bulk conduction of water and dissolved elements (Carlquist, 2010). The conduction pathway consisting of the cell wall system and open lumens of conducting cells is termed the apoplast. The critical defining characteristic of sapwood is the presence of both the apoplast and symplast, the latter being the network of living cell contents mostly contained in small, thin-walled parenchyma cells (Shigo and Hillis, 1973). In
heartwood-forming species, as new rings of sapwood are added to the perimeter of the mature stem cylinder, rings of older sapwood are converted into heartwood. Heartwood conversion consists of the withdrawal of the symplast including the removal of cytoplasmic nitrogen (N), phosphorous (P), and potassium (K) (Meerts, 2002), the cessation of water conduction in the xylem, and frequently the deposition of organic compounds that confer some degree of decay resistance (Shigo and Hillis, 1973).

Trends of cation distribution in the stemwood of living trees result from the interaction of tree physiology and external environmental conditions. Various analytical methods have been used to identify internal physiological and pathological processes in wood that affect cation concentration (Smith and Shortle, 1996). High resolution chemical analysis of precisely dated tree-ring series provides the opportunity to better understand these naturally occurring interactions. The objective of this research is to identify naturally occurring processes in trees such as maturation and infection that affect distribution of K, calcium (Ca), and zinc (Zn) cations along the radial vectors of tree rings collected as increment cores. Determination of the effects of normal internal biological processes will improve the reliability of detection for releases of environmental contaminants.

The elements Ca, K, and Zn are essential for plant nutrition and generally enter the tree translocation system as cations. Within plant tissues, a small amount of Ca occurs in the cell membrane and cytoplasm, while the bulk of Ca crosses the structural polymers of plant cell walls (Pilbeam and Morley, 2006). Most Ca translocation occurs through the apoplast and follows a Donnan equilibrium model (Momoshima and Bondietti, 1990). Unlike Ca, K functions to regulate osmotic and electrochemical gradients as well as enzyme activity rather than for mechanical structure and is actively accumulated and transported within the symplast. Homeostatic regulation of cytoplasmic K is likely through the storage and utilization of K from vacuolar storage (Mengel, 2006). As with Ca and K, Zn is essential for metabolism and enters the tree root system as a divalent cation and is translocated as the cation or as an organic complex (Krämer, 2010) through both symplastic and apoplastic pathways (Storey, 2006; Broadley et al., 2007). Unlike Ca which in nature readily associates with the oxyanions of organic acids, Zn is frequently chelated with sulphydryl groups of organic compounds such as phytochelatins (Tennstedt et al., 2009). All classes of enzymes contain members with an absolute requirement for Zn to provide the catalytic center or spatial conformation for enzymatic activity (Broadley et al., 2007).

Early research on the inorganic chemistry of wood analyzed acid digests of bulk samples of wood ash as a potential commercial source for K fertilizer (Forest Products Laboratory, 1919). That research on wood ash did not consider wood position along the stem radius as a source of variation in K concentration. Improved analytic sensitivity permitted element determination from the ashing or the direct acid digestion of smaller samples of wood contained in a few tree-rings or in localized layers associated with the tree wound response (Safford et al., 1974; Smith and Houston, 1994). These improvements increased spatial resolution and the potential to increase temporal resolution with respect to the concentration of K and other elements in the year of ring formation. More mild extraction techniques (e.g., Minocha and Shortle, 1993) provided the opportunity to explore the bioavailability as well as the total concentration of inorganic elements.

More recently, non-destructive analysis of wood has demonstrated the potential to sample across very short physical distances with concurrent chemical analysis of multiple ions within a single annual growth ring. At this level of temporal precision and high sensitivity, intra-annual trends in cation dendrochemistry are observable. Techniques that do not require digestion or extraction of samples include proton induced X-ray emission (PIXE; McClena-
or wavy light-gray lines extending more-or-less along the length of the core sample, essentially following the radius of the sample stem. Although consisting of the same cell types with similar intrinsic density (Wiedenhoft, 2010), the orientation of rays results in more cell wall material exposed to block X-rays from reaching the detector. The staggered anatomical alignment of ray plates, the eccentric growth of many tree stems, and an oblique angle of sample boring results in some deviation from a strictly radial orientation. Although present, comparatively narrow rays of conifers and diffuse-porous broadleaved trees are usually not discernible in the radiograms.

3. Results and discussion

3.1. Biomineralization

Biomineralization is the term used here for the formation or accumulation of minerals by organisms into biological structures or their immediate environment. Areas of high mineral content such as precipitated crystals block X-ray transmission through the sample and appear light gray or white in the radiogram. In Fig. 1 of a sample from silver poplar (Populus alba), the white flecks in the wood formed in 1996 and 1999 are associated with peak concentrations in Ca. White flecks are similar in appearance to those previously described as calcium carbonate crystals from radiograms of P. trichocarpa and P. robusta (Janin and Clément, 1972, 1973). The flecks as measured using the 50-μm traverse plate, the eccentric growth of many tree stems, and an oblique angle of sample boring results in some deviation from a strictly radial orientation. Although present, comparatively narrow rays of conifers and diffuse-porous broadleaved trees are usually not discernible in the radiograms.

3.2. Sample checks or cracks

Physical anomalies in the sample are important to recognize because they can affect the data obtained by EDXRF. Drying checks or cracks in the sample allow radiation during EDXRF to pass unimpeded and appear dark in the radiogram. Cracks may be present in the tree prior to sampling or may occur during the sampling process and can be identified during initial screening. The black streaks in the 1996 ring (Fig. 1) are consistent with drying checks in the core. Wood in living trees is generally at or above the fiber saturation point in moisture content. Due to the anisotropic structure of wood, drying results in wood shrinkage to a greater degree in the tangential than the radial plane. Lenticular cracks or surface checks form to relieve the tension from wood shrinkage. Generally, checks occur from the outer surface of the sample inward, but the combination of visual assessment and the chemical profile would likely resolve more anomalies than either operation done separately.

3.3. Tissue and intrannual patterns of K

The high mobility and electrolytic characteristics of K stimulated development of electrical characterization of wood maturation and infection (Ostrofsky and Shortle, 1989). The typical differentiation of heartwood and sapwood by K concentration is shown in Fig. 2 of pedunculate oak (Quercus robur). The common pattern in a healthy oak is for the sapwood to have a relatively high concentration of K and for the heartwood to have a much lower concentration consistent with the metabolic role of K and high xylem mobility (Penninckx et al., 2001). Superimposed on this pat-
tern of elevated concentration of K in sapwood is an intra-annual pattern of locally high counts of K in the in the earliest-formed portion of the wide band of oak latewood (Fig. 2). If only strongly ring-porous samples were examined, the valleys may mistakenly be attributed to open lumens in the large vessels and the peaks attributed to relatively element-rich bands of parenchyma. However, an intranannual peak of K also occurs in the narrow band of latewood in Fig. 3 of Scots pine (*Pinus sylvestris*). The intra-anual variations of other elements do not show a consistent relationship with respect to tissue or cell type. Although not yet resolved, this intra-annual pattern may be due to cell-to-cell differences in the microfibril angle of cellulose and affect results obtained by X-ray fluorescent analysis (Pirkkalainen et al., 2012).

3.4. Compartimentalization and infection

Fig. 4 of willow (*Salix alba*) shows the effect of injury and infection on K concentration. Willow, maple (*Acer sp*.), birch (*Betula sp.*) as well as some other diffuse porous hardwoods do not produce heartwood (Section 3.3) as a result of wood maturation (Shigo and Hills, 1973; Wiedenhoeft, 2010). However, a darker core of wound-initiated discoloration (WID) in these trees results from wounding, infection, and tree defense processes. WID generally forms within the constitutive and induced boundaries of compartimentalization that resist the spread of infection and loss of function (Shortle, 1979; Smith, 2006). The WID can pass through several stages of moisture content and ion concentration (Shortle et al., 1996) prior to physical degradation of the wood cell walls. The sapwood in wood formed from 1996 to 2011 is characteristically high in K concentration. Wood formed in 1982–1995 is in the early stage of WID formation with low K concentration and a slightly darker appearance in an optical image (not shown). Concentration of K increases as WID progresses in wood formed in 1980–1982 and continues high in wood formed earlier which contains advanced decay. Advanced decay is indicated as darker rings (less X-ray dense) in the radiogram. The elevated K in the decayed wood of Fig. 4 is consistent with infection of the wood by microorganisms as demonstrated in both laboratory (Ostrofsky et al., 1997) and field studies (Shortle and Smith, 1987). This increase in mobile cations is the basis for electrical resistivity methods to detect internal infection (Ostrofsky and Shortle, 1989).

4. Conclusions

Dendrochemical patterns were detected in tree cores by EDXRF line scanning at a 50-μm resolution. The dendrochemical patterns of Ca, Zn, and K can identify physiological and anatomical processes within the tree. Such processes include biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartimentalization of injury and infection. Identification of these processes supports the proper interpretation of tree ring chemistry as a record of past environmental contamination events. Alignment of EDXRF elemental profiles and radiographs allows visualization of dendrochemical trends and potentially distinguishes internal physiological, anatomical, and pathological effects on tree-ring chemistry from external environmental events such as pollution impacts.

References

Forest Products Laboratory, 1919. Potash from wood ashes. US Forest Service Forest Products Laboratory Technical Note EZ. 1 p.

Fig. 4. Radiogram and K counts of willow (*Salix alba*) from Ploufragan, France showing elevated K in sapwood, advanced wound-initiated discoloration, and decayed wood.