Standardisation of methods in soil microbiology: progress and challenges

Laurent Philippot1, Karl Ritz2, Pascal Pandard3, Sara Hallin4 & Fabrice Martin-Laurent1,5

1INRA, UMR 1347 Agroecologie, Dijon, France; 2Department of Environmental Science and Technology, School of Applied Sciences, National Soil Resources Institute, Cranfield University, Cranfield, UK; 3INERIS, Parc Technologique ALATA, Verneuil en Halatte, France; 4Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden; and 5Welience Agro-Environment, Dijon Cedex, France

Correspondence: Laurent Philippot, INRA, UMR 1347 Agroecologie, 17 rue Sully, 21065 Dijon Cedex, France.
Tel.: +33 3 80 69 33 46; fax: +33 3 80 69 32 24; e-mail: laurent.philippot@dijon.inra.fr

Received 14 December 2011; revised 22 April 2012; accepted 15 June 2012.
Final version published online 13 July 2012.
DOI: 10.1111/j.1574-6941.2012.01436.x

Editor: Lily Young

Keywords
standardisation; DNA; ISO; soil; microorganisms; ecology.

Abstract
A plethora of methods have been developed over the few last decades to enable a better understanding of the ecology of soil microbial communities and their roles in soil functioning. However, there is generally considerable variation (both subtle and more extensive) in the actual realisation of these methods, and limited efforts have been devoted to their standardisation, despite this being crucial to underpin data comparison and integration. Ensuring comparable data across studies through standardisation is arguably best-practice, as well as necessary to effectively meet the objectives of various schemas, which require assessment of the consequences of the global change and intensification of human activities on the functioning of the soil ecosystem and its biological diversity. This article presents an overview of the existing and forthcoming ISO standards in soil microbiology and highlights possible future research efforts to be undertaken for developing new standards. We also discuss some practical and theoretical bottlenecks and hurdles that have limited standardisation in soil microbiology up to now.

Introduction
Microorganisms in soil ecosystems are ubiquitous, abundant, diverse and essential for many soil functions such as carbon and nitrogen cycling, plant productivity and climate regulation (Whitman et al., 1998; Torsvik et al., 2002; Falkowski et al., 2008; van der Heijden et al., 2008; Bodelier, 2011). Because of their importance, there is a large volume of past and contemporary researches that aims to understand the ecology of soil microbial communities, with thousands of articles devoted to this research field published annually. Numerous methods have been developed to estimate abundance, diversity and activity of soil microorganisms. Several such procedures are now successfully applied on a regular and on-going basis, perhaps most notably the chloroform fumigation-extraction technique for estimating microbial biomass (Vance et al., 1987), and DNA fingerprinting approaches for estimating the structure of microbial communities. Perversely, many of these methods become victims of their own success, and a plethora of laboratory- or even user-specific protocols, which contain minor to major modifications of the initially described methods, are now used worldwide. However, these differences between protocols are far from being inconsequential as they often include inherent bias, which hamper data comparison across studies, let alone laboratories. Indeed, variations in data obtained by different laboratories or using different protocols are commonly reported (Ocio & Brookes, 1990; Beck et al., 1997; Krsek & Wellington, 1999; Martin-Laurent et al., 2001; Creamer et al., 2009; Pan et al., 2010). A theoretically obvious, albeit practically challenging, solution is to define and use standardised methods. This is becoming all the more important because an exponentially increasing volume of data is now being generated, particularly with the advent of automated or high-throughput techniques, notably in relation to molecular biology. Such techniques offer exciting opportunities for better understanding soil microbial diversity, how it relates to soil functions, and more effective ways to manage terrestrial ecosystems to meet the challenges of sustainability. This grand challenge should be facilitated by ensuring compa-
rable data, which is necessary in order that our knowl-
edge of soil microbial communities can be effectively inte-
grated.

The concept, and practice, of standardisation in soil
microbiological assays can be applied at a range of levels,
from the individual researcher/group (vital to ensure
coherence within a body of experimentation), through
institutional (assists integration and coherence within
institutional-level programmes), to national (e.g. British
Standards and French National Organisation for Stan-
dardisation) and international [e.g. International Organi-
sation for Standardisation, (ISO)]. Here we focus on the
latter context, as this is arguably the most effective route
to achieve the higher-level aims of standardisation. More-
over, science itself is an international collaborative effort
and comparisons across studies need to be performed
beyond country borders, not least because soils and the
organisms they support operate entirely independently of
such boundaries. Standards providing internationally
agreed methods for assessing soil microorganisms have
mostly been developed by the International Organisation
for Standardisation (ISO). However, the number of ISO
standardised methods is still scant in relation to the
numerous methods that have been developed within the
field of soil microbiology. In addition, the use of ISO
methods in soil microbiology research articles, outside of
ecotoxicology studies, is in our perception relatively rare.
In this article, we underline the importance of standardi-
sation in soil microbiology, present an overview of the
existing and forthcoming ISO standards, and discuss
some technical and cultural hurdles. One aim is to stimu-
late debate in this field and to encourage a move toward
the development and greater dissemination of interna-
tionally agreed standards in soil microbiology.

Standardisation in soil microbiology: dealing with the natural complexity and diversity

Soils are arguably the most complex systems on the plan-
et, given the extraordinary diversity of their chemical
and biological constituents. In addition, as the extreme struc-
tural heterogeneity (Ritz, 2008). There are also a wide
range of soil types, with huge numbers of classes of soil
recognised in taxonomic schemes both at global down to
national scales, for example, some 748 Soil Series are
recognised in the Soil Survey of England and Wales
(Clayden & Hollis, 1984) and thousands of types in the
lower-order taxa of World Reference Base (FAO, 2006).
The geo-spatial distribution of soils is also complex across
virtually all size scales, which means that studies at almost
any spatial scale involve a variety of soil types, which may
confound the ready application of standard techniques.

This diversity of constitution and basic characteristics
severely challenges the ability to set standards in measur-
ing soil properties and processes. This is particularly true
for biological aspects of soil systems, and in part accounts
for the concomitant diversity in methodological variants.
Even something as outwardly straightforward as deter-
mining soil organic carbon is confounded by the fact that
soils can vary from essentially 0–100% organic matter,
there is potential (and variable) interference from inor-
ganic forms of carbon, and the same procedure is cer-
tainly not appropriate for soils at the two extremes
(Nelson & Sommers, 1996). It is often then the case that
no single method is universally appropriate and that vari-
ants within methods are needed to compensate for differ-
ces in properties that may occur if they are to be
applicable to the gamut of soils. For example, measuring
soil respiration by CO2 emission is relatively straightfor-
ward if the pH of the soil is lower than 7.5, but in more
alkaline soils, the partition coefficient of CO2 between
air and water starts to confound the technique because pro-
portionately more CO2 will prevail in the pore water
(Anderson, 1982). The quality and quantity of organic
matter and clay vary between soils that affects the nature
and extent of potential absorption of biochemicals, nota-
bly nucleic acids, such that a range of devices to counter
such effects need to be applied, contingent on the soil.
These factors can be compensated for by variants in tech-
nique, and such variants can be duly standardised. In
principle, such matters do not then preclude the setting
of standards, but they certainly prevent the setting of sim-
ple standards. Furthermore, there is a significant issue
that affects data comparability, as with complex protocols,
there is an increased likelihood that different operators
will determine different absolute values for measurements,
because of accumulations of even subtle differences
between each of the steps in such procedures.

Another factor arising from the need for sophisticated/
adjusted/complex protocols is the ease with such proto-
cols are agreed upon within the context of a standards
setting framework, particularly an international one. This
is because the optimal procedures are not necessarily
readily defined and can become more a matter of best
judgement. For example, it can be argued either way that
the pH of the buffer medium in enzyme assays should be
standardised to a particular pH, or the pH of the particu-
lar soil under scrutiny (German et al., 2011), but there
are then supplementary issues of how to determine that
pH. Another concern is at which temperature one should
measure soil respiration? The same for a sub-arctic tun-
dra soil as one from Namibia or a ‘locally pertinent’ tem-
perature? And then what moisture content is optimal for
respiration measurements and how should that be deter-
mined? Such questions are undoubtedly very important

© 2012 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved
in defining standards but challenge the attainment of scientific consensus.

Current standards in soil microbiology

Despite the inherent complexity and diversity of soils described earlier, some methods to study soil microorganisms have been standardised since 1997 (Table 1). Due to a strong concern regarding the degradation of soils in relation to local and diffuse contamination or loss of biodiversity, the existing standards were developed by the ‘Soil quality’ Technical Committee ISO/TC 190 with a strong focus on assessing the effects of chemicals and pollution on the soil fauna and soil microorganisms (Nortcliff, 2002). Methods for measuring soil microbial biomass using substrate-induced respiration and fumigation-extraction were the first ones to be standardised in the field of soil microbiology in the late nineties (ISO 14240, Table 1). Indeed, these methods based on pioneering work of Vance et al. (1987) were proposed to provide a sensitive indicator for measuring changes in the total quantity of soil microorganisms in response to environ-

<table>
<thead>
<tr>
<th>Year</th>
<th>Method</th>
<th>ISO reference</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>Determination of soil microbial biomass – part 2: fumigation-extraction method</td>
<td>ISO 14240-2</td>
<td>Brookes et al. (1985); Vance et al. (1987); Ocio & Brookes (1990); Sparling et al. (1990); Wu et al. (1990); Inubushi et al. (1991); Mueller et al. (1992); Harden et al. (1993a, b)</td>
</tr>
<tr>
<td>1997</td>
<td>Determination of nitrogen mineralization and nitrification in soils and the influence of chemicals on these processes</td>
<td>ISO 14238</td>
<td>Bremner (1965); Henriksen & Selmer-Olsen (1970); Selmer-Olsen (1971); Stanford & Smith (1972); Andersch & Anderson (1991)</td>
</tr>
<tr>
<td>2002</td>
<td>Determination of abundance and activity of soil microflora using respiration curves</td>
<td>ISO 17155</td>
<td>Anderson & Domsch (1978); Nordgren et al. (1988); Arnebrant & Schnurer (1990); Chander & Brookes (1991); VanBeelen et al. (1991); Stenstrom et al. (1998); Wilke et al. (1998)</td>
</tr>
<tr>
<td>2002</td>
<td>Soil quality – guidance on laboratory testing for biodegradation of organic chemicals in soil under anaerobic conditions</td>
<td>ISO 15473</td>
<td>Beland et al. (1974); Gowda & Sethunathan (1976); Healy & Young (1979); Attaway et al. (1982); Kearney (1982); Shelton & Tiedje (1984); Ward (1986); Alef & Nannipieri (1995)</td>
</tr>
<tr>
<td>2002</td>
<td>Laboratory methods for determination of microbial soil respiration</td>
<td>ISO 16072</td>
<td>Gupta & Singh (1977); Nordgren (1988); Watts et al. (2000)</td>
</tr>
<tr>
<td>2004 UR</td>
<td>Determination of potential nitrification and inhibition of nitrification – rapid test by ammonium oxidation</td>
<td>ISO 15685</td>
<td>Belser & Mays (1980); Hansson et al. (1991); Stenberg et al. (1998); Winkel et al. (1999)</td>
</tr>
<tr>
<td>2010</td>
<td>Measurement of enzyme activity patterns in soil samples using fluorogenic substrates in micro-well plates</td>
<td>ISO 22939</td>
<td>Tabatabai (1994); Stemmer et al. (1998); Marx et al. (2001); Vepsäläinen et al. (2001, 2004); Marx et al. (2005); Niemi & Vepsalainen (2005)</td>
</tr>
<tr>
<td>2010</td>
<td>Determination of soil microbial diversity – part 1: method by PLFA analysis and PLEL analysis</td>
<td>ISO 29843-1</td>
<td>Blight & Dyer (1959); White et al. (1979); Findlay et al. (1990); Frostegård et al. (1991); Zelles & Bai (1993); Alef & Nannipieri (1995); Zelles (1999); Gattinger et al. (2003)</td>
</tr>
<tr>
<td>2011 UP</td>
<td>Method to directly extract DNA from soil samples</td>
<td>ISO 11063</td>
<td>Tsai & Olson (1991); Smalla et al. (1993); Zhou et al. (1996); van Elsas et al. (2000); Martin-Laurent et al. (2001); Niemi et al. (2001)</td>
</tr>
</tbody>
</table>

UR, under revision; UP, under publication.
mental factors or anthropogenic disturbances. Most of the other existing ISO standards were developed for similar purposes and are therefore biased toward effective monitoring of the soil microbial community to meet extant policy requirements (Table 1). This trend is particularly obvious for ISO 14238 ‘Determination of nitrogen mineralisation and nitrification in soils and the influence of chemical on these processes’ and ISO 15473 ‘Testing for biodegradation of organic chemicals in soil’. Thus, ISO 14238 was designed to determine the effects of different concentrations of a chemical on the N-cycling processes using dose–response curves while ISO 15473 gives general guidelines for the selection and method of tests to determine the biological degradation of organic chemicals introduced into the soil either intentionally or accidentally.

Criteria related to applicability and effectiveness of standards for routine analyses such as high throughput analysis, cost, usability or data interpretation have up to now excluded molecular methods, such as terminal fragment length polymorphism for assessing microbial diversity, despite their widespread use in research. However, among the new ISO standards, the development of the ISO 11063 standard for soil DNA extraction (Petric et al., 2011) is of special interest because it is the first step of all PCR-, hybridisation, and sequencing-based molecular analyses of the diversity and abundance of soil microbial communities. As a result, thousands of studies are performed yearly in environmental microbiology using soil DNA extraction methods. Due to this important business market, at least ten companies are commercialising soil DNA extraction kits, which add to the list of home-made protocol. This is despite it being well established that the apparent microbial diversity determined by any nucleic acid analysis procedure is contingent on the DNA extraction method (Frostegård et al., 1999; Martin-Laurent et al., 2001; deLiphtay et al., 2004; Feinstein et al., 2009; Pan et al., 2010; Delmont et al., 2011). The ISO 11063 standard for soil DNA extraction is based on both chemical and physical approaches for extraction and lyses of the microbial cells as described by Petric et al. (2011). This ISO is timely since studies of soil microbial diversity based on soil DNA extraction are generating an exponential amount of sequence data, and large scale projects aiming at sequencing the soil metagenome are now launched (Vogel et al., 2009). Knowledge of the identity and the quantity of each compound used in the ISO 11063 or any ISO protocol provides transparency and allow users a complete quality control, which is a major advantage over commercial kits. Thus, production batch effects can occur, and this has been observed for some commercial soil DNA extraction kits (unpublished data). A transparent protocol also avoids the risk of subsequent modifications of the kit reagents by companies or risks associated to the versatility of their business strategies such acquisition and merging, which are common activities for biotechnology industry.

While no nucleic acid-based method for assessing soil microbial diversity have yet been proposed for international standardisation, two lipid-based methods have recently became ISO standards (Table 1). Phospholipid fatty acid (PLFA) and phospholipid ether lipids (PLEL) analyses are rapid and inexpensive methods for providing a quantitative measure of the viable soil biomass and complex microbial community profiles. They offer the advantage of targeting the entire microbial community, thus allowing calculation of the fungal/bacteria ratio using markers PLFA specific of these domains (Frostegård & Bååth, 1996). Since the late 1990s, several comprehensive reviews discussing the strengths and weaknesses of the use of lipid fatty acids for assessing microbial biomass and community structure in soil have been published (Olsson, 1999; Zelles, 1999; Kaur et al., 2005; Frostegård et al., 2011). Unfortunately, while some of the ISO standards described in Table 1 have been published more than 10 years ago, their use by the scientific community is still very limited. Thus, the ISO has no power to enforce the implementation of the standards it develops and therefore adoption of the ISO standard is still mainly voluntary.

Directions for future standards

The standardisation effort is uneven between methods addressing the abundance, the diversity and the activity of the soil microbial community. Indeed, while there are already three ISO standards for quantifying soil microbial biomass, a new work item proposing a standard to estimate the abundance of the soil bacterial community by 16S rRNA gene targeted quantitative PCR (qPCR) was recently adopted by the Soil quality ISO technical committee (Australia, September 2011). The recent developments of qPCR analyses also allow the quantification of the abundances of specific functional or taxonomical microbial groups, which may represent useful bioindicators (Wessen & Hallin, 2011). With the use of appropriate blanks, internal and surrogate standards, qPCR is a reliable method having the advantage to offer high throughput and cost-effective analyses.

For a better understanding of soil microbial activity, or more generally of soil functioning, several methods for quantifying potential enzyme activity have been developed. Even though these methods providing an insight of the size of the enzyme pool have some limits (Wallenstein & Weintraub, 2008), they are commonly used as microbiological indicators of soil quality and should therefore be
standardised for comparison of microbial activities both between soils and laboratories. For example, because of their environmental and agronomical importance, microorganisms involved in N-cycling are of key interest. In addition, they are popular models in soil microbial ecology for relating microbial diversity and soil functioning. However, only measurement of potential nitrification has been internationally standardised up to now, while methods for monitoring other N-processes such as nitrogen fixation and denitrification also necessitate standardisation. For example, the original protocol for estimating potential denitrification (Smith & Tiedje, 1979) has been modified in many ways. In this assay, to measure the activity of the pool of denitrification enzymes in the soil at the time of sampling, soil slurries are incubated in the laboratory in non-limiting denitrification conditions (without oxygen, addition of nitrate and carbon, and of chloramphenicol to avoid de novo synthesis) so that only the amount of enzyme is rate-limiting. Changes in the original protocol include excluding the chloramphenicol, which can decrease the activity of synthesized enzymes, addition of different carbon types and amount (glucose, acetate, glutamic acid, etc) and incubation of the soil slurries in various conditions. Similarly, determination of the nitrogenase activity using the acetylene reduction technique (Hardy et al., 1968) is subjected to various modifications of the protocol resulting, for example, in variants of the acetylene concentration (0.03–0.1 v/v). In contrast to other methods, most modifications of these methods are not soil-specific and both potential denitrification and nitrogen-fixation assays could readily be standardised in future.

Finally, regarding methods to monitor the diversity and the structure of the soil microbial community, the adoption of the ISO 29843 for PLFA and PLEL analyses opens the path for other standards. While it is too early to propose any standardisation of the new high-throughput sequencing technologies (e.g. 454 pyrosequencing, etc...), other powerful approaches such as those based on taxonomic and functional microarrays meet the criteria to become standards. Of course these perspectives for the development of future standards in soil microbiology are not exhaustive, and we encourage soil microbiologists to expand it by proposing other popular methods for standardisation.

The ISO standardisation process

If one is interested in developing new international standards, it is worth reviewing how standards are developed within the ISO framework. According to ISO, a standard is a document that is established by consensus and approved by a recognised body (ISO/IEC, 2004). It provides, for common and repeated use, rules, guidelines or characteristics for activities or their results, aimed at the achievement of the optimum degree of order in a given context. Standards should be based on the consolidated results of science, technology and experience, and aimed at the promotion of optimum community benefits (ISO/IEC, 2004). Different types of standards can be developed within this framework (e.g. terminology, product, process, service, testing standards). Such standards are elaborated by technical committees and/or subcommittees that usually comprise representatives from the industrial, technical, business sectors as well as representatives of government agencies, testing laboratories, consumer associations, non-governmental organizations and academia.

The standardisation process includes six successive stages, taking place over a time period usually not exceeding 48 months: viz. proposal, preparatory, committee, enquiry, approval and publication stages (ISO/IEC, 2009) (Fig. 1). To confirm the need for the development of a new standard, the new work item proposal should be supported by scientific papers presenting the scientific background, and some results demonstrating the applicability and the relevance of the method. A proposal is accepted when at least five participating countries vote positively and nominate experts to participate actively in

![Flow chart summarising the different steps for standardising a new test method within the ISO framework.](image-url)
its development. The first draft of the method is submitted to the experts for discussion and improvements until a consensus has been reached on the technical content. Then, the draft document is distributed for voting and comments by the participating countries of the technical or sub-committees. In case of major disagreements, successive committee drafts may be considered before submission of the text as a draft international standard.

The validation process of a future standard is crucial before publication as an international standard. It involves laboratories from National Bodies of the relevant technical or sub-committees (but not exclusively) for evaluation of the reproducibility of the test method under standardisation. The resulting performance characteristics of this inter-laboratory trial are part of the standard. When all due processes have been satisfactorily completed, the standard is then officially published and released for adoption. International standards are then reviewed at the least 3 years after publication and every 5 years after the first review by all the ISO member bodies to incorporate, in particular, improvements of the method or technical changes. During this review process, members of the technical or sub-committees decide whether the standard should be confirmed, revised or withdrawn.

Fictitious, cultural and real hurdles

As underlined by Pan et al. (2010), inter-calibration of protocols is not a common practice in environmental microbiology. As a consequence, while an impressive list of methods, regularly summarised in books, has been developed for studying microorganisms in soils, limited effort has been devoted to standardisation. This paradox is accentuated by the fact that most of these methods are subjected to almost endless modifications of their protocols, which can affect the results and hamper data comparison. These subtle to deep changes can be as a result of weaknesses in the original protocols, which are often related to a failure when applied to a different soil. However, a large number of variations in protocols can still be found in the literature for similar or even identical soils. One could therefore ask whether the existence of so many deviating protocols only reflects a true need for modifications because of the overwhelming diversity and complexity of the soils, or if there are other factors involved conveyed by a certain lack of rigor.

Possibly the fact that soil microbiology is still facing an tremendous and ongoing method development can be considered as contradictory to developing standards. However, evolving fields with technological evolution, new methods or new quality and safety requirements are not an obstacle to standardisation. Indeed, in biomedical science, laboratory-based medical and scientific microbiologists from throughout the Health Protection Agency in Scotland have developed the National Standards Methods, which include, for example, a standard for the detection of influenza viruses by qPCR. Within the ISO, all existing standards are reviewed at intervals of not more than 5 years to evaluate whether a revision is required. This is, for example, the case of the ISO 15685 'Determination of potential nitrification and inhibition of nitrification – rapid test by ammonium oxidation', which was revised in 2011.

Another obstacle could be the naïve thinking that certain of our methods are inadequate for standardisation. It is essential that standardised methods provide meaningful information, but not that they are 'perfect'. In soil microbiology, such perfection would apply to an assay that provides a true picture of microorganisms’ activity, diversity or abundance in the soil. Given the complexity of the soil system and inherent biodiversity, this may in any case be untenable. As the accuracy of any method in soil microbiology cannot be estimated directly but only through the prism of other methods, microbiologists are facing a potentially unsolvable paradox. In addition, sample-specific optimisation of methods can lead to 'nearsightedness', the more detailed description of the studied soil being at the price of not seeing the bigger picture because of the impossibility to compare and integrate data across studies.

Evaluation of the best protocol to standardise is also often hampered by a trade-off situation in which one advantage is lost for another. An example of such a circumstance is the trade-off in relation to soil DNA extraction where the DNA yield can be increased, but typically at the cost of lower quality which may then compromise its apparent representativity, particularly where annealing processes are important.

Final remarks

In the recent years, increasing efforts have been made to promote consistency among laboratories. These efforts were mostly devoted to improving standardisation and transparency in metadata capture and exchange such as the minimum information about a genome sequence (Field et al., 2008), the minimum information about a marker gene sequence (Yilmaz et al., 2010) or the genomic standards consortium: bringing standards to life for microbial ecology (Yimaz et al., 2011). As protocols continue to evolve and diversify, guidance modules for reporting in a standardised manner, the use of techniques have also been described. Thus, the lack of consensus on how to perform qPCR experiments has led Bustin et al. (2009) to propose the minimum information for publication of quantitative real-time PCR experiments (MIQE) guidelines. There are several precedents such as the minimum
information about a proteomics experiment (Taylor et al., 2007) or the minimum information about a microarray experiment (MIAME) (Brazma et al., 2001). The MIAME is now an accepted reference as the reflected by the number of citations, which exceed 1600 (ISI Web of Knowledge). These efforts also highlight that there are other paths for standardisation than the ISO. However, standardisation should proceed within the auspices of international working bodies and be preferably in open access or with a very low cost to facilitate the dissemination within the scientific community. Standard adoption also requires both information and a stronger involvement of leading researchers within the field. There is a clearly a need and room for new standards in soil microbiology. New standards would be beneficial to researchers, non-governmental organisations, governments, farmers and other land managers, for better monitoring soil quality and understanding of soil functioning. Developing standard protocols in soil microbiology is crucial to meet the objectives of the Millennium Ecosystem Assessment (2005) and of the emerging EU Soil Framework Directive (Commission of the European Community, 2006) for assessing the consequences of the intensification of human activities on the functioning of the soil ecosystem and its biodiversity.

In conclusion, we argue that there is a need to avoid the perhaps inevitable procrastination in setting standards that arises from the range of issues discussed earlier, and we need to be pragmatic in getting standards accepted and implemented, with caveats duly acknowledged. There is a trade-off between the urge for perfect methods vs. standardised methods, and we believe that standardisation allowing data comparison across studies, and therefore facilitating the quest for ‘unifying principles in soil ecology’ as described by Fierer et al. (2009), is more important than describing a few specific samples ‘perfectly’. The rewards from such an approach would far exceed the drawbacks.

Acknowledgements

We would like to thank many colleagues who have, directly or indirectly, contributed to the ideas presented in this work. This work was partly supported by the European Commission within EcoFINDERS project (FP7-264465) and the Ecofun Microbiordiv project (FP7 ERA NET 216/01).

References

framework for the protection of soil and amending directive 2004/35/EC.
Standardisation in soil microbiology

