A new experimental device for rapid measurement of the trunk equivalent modulus of elasticity on standing trees

Jean Launaya,*, Philippe Rozenbergb, Luc Paquesb and Jean-Marc Dewitteb

aESEM, 8 rue Léonard de Vinci, 45067 Orléans Cedex 2, France
bINRA Orléans, 45160 Ardon, France

(Received 15 July 1999; accepted 4 January 2000)

Abstract – A new device has been developed in order to determine experimentally the modulus of elasticity of standing trees. Following preliminary trials on aluminum and steel beams, its performances have been compared to the one of another equipment built according to the model proposed by Koizumi (1987). Large-scale trials were then carried out on Douglas-fir and larch plantations of 72 and 292 trees, respectively. Results showed that the new device described here allowed rapid assessments of the mechanical characteristics presented by populations of rather young trees (i.e.: less than 20 years old). Thus, the data obtained with the device can efficiently be included in selection schemes along with other criteria.

genetics / modulus of elasticity / standing tree / douglas-fir / larch

1. INTRODUCTION

The use of wood as construction material requires a good knowledge of its mechanical resistance and elasticity in order to avoid breakage problems and to provide enough rigidity to the built structures (for example, Panshin and de Zeeuw [30]). Thus, forest tree selection schemes should include these requirements as criteria for the breeders to be able to provide elite trees selected as young as possible according to their adaptation and growth but also to their wood properties, and especially their mechanical characteristics [43]. Until now, selection methods in the area were mostly based on density measurements that are proved to be indirectly representative of wood mechanical properties [2, 11, 27, 42-44]. In general, density measurements are performed on small wood samples (increment cores) drilled off the trunk in order to prevent damages to the trees. Basic density
measurement is the most commonly used technique [44]. Each result corresponds to a local value, while one can observe great variations within a given tree [43]. Variations along the radius can be accounted for by techniques such as microdensitometry [31]. Other techniques may be used to estimate wood density: the Pilodyn tester is a hand-held instrument which propels a spring loaded needle into the wood. Depth of needle penetration is read directly from the instrument, and is assumed to be well correlated with wood density [8, 13]. Because wood density can be indirectly measured at low cost with Pilodyn, it is often used in tree breeding studies [1, 6, 34, 36, 37, 40, 41]. Other data are obtained with the Resistograph, a device intended to measure the power required to drill a hole into a given trunk [7, 32]. However, one can see that, whatever the technique considered, the data obtained remains based on extremely localized measurements. That is why mean density of a single core (or equivalent) is sometimes poorly related with mechanical properties of destructive samples sawn from the trunk [25, 26, 43]. Moreover, this type of data have been shown to be only weakly correlated to the trunk equivalent MOE in bending MOEeq [22]. Presumably, one reason that density is a poor predictor in some situations is also that it cannot account for knots in the wood. Therefore systems which cover a vertical range in the stem have a greater opportunity to include some knots in the volume of wood evaluated. Among possible rapid methods, ultrasound (US) propagation speed within tree trunks allows to deduct CORRELATION BETWEEN MOE AND DENSITY and relevance for measuring the mechanical properties of individual trees. In the second part, we assess the performance of the method in genetic field tests.

2. MATERIALS AND METHODS

2.1 Reliability of the measurement and relevance for measuring the mechanical properties of individual trees

2.1.1 The starting point: Koizumi’s method [14, 19]

The principle of the MOE measurement method developed for standing trees by Koizumi is schematized (figure 1). An intermediate structure (ABC) is fixed transversely onto the trunk (T) in order to apply a constant bending moment leading to a bow-shaped distortion. The equivalent axial MOE of the trunk is then calculated according to the geometry of the system and to the force exerted onto the trunk (T) in order to apply a constant bending moment leading to a bow-shaped distortion. The equivalent axial MOE of the trunk is then calculated according to the geometry of the system and to the force developed by the device. This method provided interesting results when it was tested on five clones of Douglas-fir [25]. Indeed, good correlation was observed between MOE estimations obtained either on standing trees or on...
destructive wood samples sawn after felling of the trees [25]. Improvement of the system led us to develop a different device easier to handle and to setup.

2.1.2 Principle of the bending test

The principle of the pure bending test is shown figure 2. This method is routinely used in laboratories to measure the MOE of diverse materials and is a standard to determine the axial MOE of clear wood samples cut along the trunk main axis [29]. The structure to be tested is placed onto two supports A and B, in order to be subjected to two forces equidistantly applied from the middle of the beam. According to the classical beam theory [3], with an homogeneous material, between these two forces the bending moment and the radius of curvature are constant. Determination of this radius R, allows to calculate the MOE of the sample according to the force applied, the shape of the beam and the distances between forces and supports. For a wood beam, the obtained MOE is relative to the AB direction (figure 2), generally the axial direction.

In this paper, we propose to modify the technique in order to perform global MOE measurements on standing trees. The experimental device we developed for that purpose is composed of two independent units (figure 3). The first one is dedicated to apply the bending force and the second one to measure the resulting deflection of the trunk. The center of the device is routinely placed 1.3 m above the ground. Diameter of the trunk is determined at this height with an accuracy of 0.5 mm. Pressure is applied at the level of a rectangular aluminum gantry (length: 1.8 m, height: 0.4 m). Rigidity of the pressure bar is such that it avoids the device to get in touch with the trunk during assembly and measurements. Fastening of the device onto the trunk is realized by the mean of wide steel contacts in order to avoid wounding of the bark. Pressures are generated by the tightening of two screws separated by 1.2 m and equipped with two digital sensors used to calibrate the bending forces with an accuracy of 10 N.

Mean curvature of the trunk is then measured 1.3 m above ground level by the second unit presenting in its middle a distance measurement equipment kept in slight contact with the trunk by the mean of a weight located at

![Figure 1. Principle of the experimental device proposed by Koizumi (1990).](image)

![Figure 2. Principle of the pure bending test of an homogeneous cylindrical sample $E = \frac{64 * R * F * a}{\pi * d^4}$ where E is the sample module of elasticity (Mpa), F is the applied force at each point (N), a is the distance between the support and the applied load, d is the diameter of the sample, R is the radius of curvature.](image)

![Figure 3. Schematic description of the new device based on pure bending test. Loading unit/displacement measuring unit.](image)
the bottom of the leaning unit. Deformations produced by the device are detected with an accuracy of 10 µm. More detailed description of the device is in Dewitte [10]. Considering that the above hypothesis are valid in this case, the obtained measure is the bending equivalent of the axial trunk MOE. Trees or genetic entries are ranked according to the standing tree MOEeq. The same trees and genetic entries are also ranked according to MOE measured on boards or samples cut off the same trees felled and dried. Both rankings are compared and expected to be closely related.

2.1.3 Testing of the device

The device was tested on four experiments:

2.1.3.1 Metallic beams

We used one steel and one aluminum beam, in the laboratory. The objective was to test the effectiveness of the device for measuring MOE of known samples.

2.1.3.2 Standing trees

We used some black pine trees located at the INRA research station, Orléans. The objective was to compare Koizumi’s device built at INRA Orléans [25, 26] with the new device. The same measurements were performed with both devices on the same trees.

2.1.3.3 Comparison with standard destructive methods

We used one Douglas-fir clonal field test (same as in [26, 33]). The objectives were to compare tree and clone ranking for trunk MOE estimated with the device, and dry wood MOE measured on destructive samples sawn in the same trees after felling.

The Douglas-fir sample includes 72 trees and 19 different clones [10, 26]. Trees were 17 years old at the time of the experiment. Three to four individuals were selected per clone in order to present the greatest variability with regard of the diameter of their trunks. Measurements separated by a complete reset of the device were repeated three times on the same axis. The device was then rotated according to a 90° angle and measurements were repeated as before in order to take into account the non axisymmetry of trunk cross-sections. Thereafter, 29 trees corresponding to 8 different clones were felled and sawn into boards. Three boards of 1.7 m were produced from each tree so that their middle was approximately located 1.3 m above the ground. Each board was dried in a steam-room during some weeks with a permanent monitoring of their wood water content. Then they were tested in order to determine their respective MOE. Mechanical characteristics of the dry wood were further analysed. Four smaller samples free of knots (figure 4) obtained from both upper and lower parts of each board were analyzed according to the vibration test described by Haines et al. [12]. Indeed, the author showed that the test provides results similar to those obtained with the pure bending test. The strong correlation between the vibration test and the bending test was also reported by Dechalotte [9] on the Douglas-fir clonal sample.

2.2. Performance of the method in genetic field tests

Using his device, Koizumi and colleagues [15-18] found significant differences among genetic entries in Japanese larch. Our goal was to test for the existence of genetic effect for trunk MOE estimated with our device.

For that we used two samples:

– The Douglas-fir clonal test previously described (2.1.3.3);
– One large hybrid larch progeny field test (complete description of the experiment can be found in Leroux [23]).

The objectives were:

– to verify that the new method allows a significant statistical resolution of the different genetic entries;
– to compare genetic units ranking for trunk MOE and for density measurements made on the same trees in the frame of a previous study [23];
– to test the utility of the new device for large scale MOE measurements on standing trees.

The plant material is composed of 292 trees corresponding to 28 families of hybrid larch (Larix decidua × L. kaempferi). Trees were 16 years old at the time of
measurement. Their diameter averaged out to 18.1 cm with extreme values of 11.3 and 21.6 cm. In the experiment, measurements were repeated four times according to a single axis. As before, they were separated by a complete reset of the distance measurement equipment.

3. RESULTS AND DISCUSSION

3.1. Testing of the device

3.1.1. Metallic beams

In a first approach, the device we developed was tested on square section of steel and aluminum beams that presented well-known MOE. Indeed, the steel beam was calibrated so that its rigidity corresponded to that of a tree of MOE 8 000 Mpa and diameter 200 mm. The aluminum beam corresponded to a tree of MOE 8 000 Mpa and diameter 85 mm. In the case of the steel beam, displacements of 0.35 mm were observed as a result of a force F of 4000 N (figure 2). For both calibrated beams, we were able to verify that the MOE measured with the new device were accurate and corresponded to the one expected (i.e.: 207 000 Mpa and 69 500 Mpa, respectively).

Measurement incertitude:

Being given that the data involved in MOE calculation for metallic beams are at least 99% accurate, most of the incertitude that we observed was linked to the measurement of the radius of curvature (i.e.: 3%). If trees are considered, an additional error may arise from diameter measurements performed on trunks which are hypothesized to be circular. In that case, a simple calculation shows that the incertitude related to the radius value acts four times on the one calculated for the modulus (see legend of figure 1). Thus, MOE measurement incertitude increases as tree diameter decreases (e.g.: 2% incertitude for a diameter of 100 mm). In conclusion, the device should routinely allow MOE determinations of standing tree with an accuracy reaching at least 95% as long as its trunk shape is presumed circular.

3.1.2 Standing trees

In a second approach based on a few sample trees, we compared the device we have developed to the version of Koizumi’s. The force-displacement curve was found linear by Mamdy [25], Dewitte [10] and Dechalotte [9] using both prototypes of the rigidimeter. Thereafter, repeated measurements performed on the same trees with the new device revealed its constancy and reliability. Results also showed that the state of the bark surface did not have significant effects on the data obtained.

3.1.3 Comparison with standard destructive methods

We present here how does the in situ measurements in green wood correlate with the dry wood measurements, being given the possible confusing effects of moisture content and also the problems of samples position in the tree, and of samples geometry and structure.

Moisture content was determined just after felling of the trees and averaged out to 94%. In general, wood MOE decreases when relative humidity percentage increases until saturation point is reached. Then it remains quite constant [5, 21]. Thus, discrepancies between samples presenting different MOE at the hygroscopic equilibrium remain rather constant once the saturation point is reached. In consequence, MOE rankings should not be affected by the type of material used for their determinations (i.e. tree trunks, boards or smaller samples). At the end, small samples were cut off from wood without any apparent defect, while trunks include knots and other defects, which tend to decrease wood MOE [3]. For this reason, smaller samples should generate higher MOE values.

Mean MOE values obtained for each tree and clone are summarized (figures 5a-c). At the tree level (figure 5b), correlation coefficient was moderate: $r = 0.58$ ($p = 0.0011$) between trunk MOE$_{eq}$ and central board MOE, and $r = 0.54$ ($p = 0.0019$) between trunk MOE$_{eq}$ and the mean of boards MOE. One may observe that only one tree is accountable for a large part of this coefficient of correlation. At the clone level (figure 5c), correlation between trunk MOE$_{eq}$ and destructive samples MOE was stronger: it was: $r = 0.74$, $p = 0.04$ (with central board MOE) and $r = 0.79$, $p = 0.02$ (with the mean of 2 boards MOE). The genetic entry level is the important one for tree breeders, because selection is conducted at the clone, family or provenance level, but not at the tree level. Thus ranks appeared well conserved from a breeder point of view when measurements performed on boards and small samples are considered, despite the differences for sample size, geometry, structure and moisture content. According to the results of these tests, we consider that MOE measurements performed on standing trees with the new device were reasonably validated for its use by tree breeders. Based on these preliminary results, the new
device was used to test the mechanical performances of genetically identified populations among two different species (i.e.: Douglas-fir and hybrid larch).

3.2. Performance of the method in genetic field tests

Douglas–fir populations:

This experiment aimed at knowing if there was significant clonal variation for the trunk MOE measured with the new device. These variations sources may interfere with between-tree and between-clone variation.

Analysis of variance of MOE measurements performed on standing trees.

Analysis of variance allows to pinpoint the eventual effect of different factors on a selected variable. As in [26] with Koizumi’s machine, analysis of the MOE estimated at the tree level revealed a highly significant clonal effect characterized by a F test value of 6.3 (Table I). As in [26], MOE values did not appear to be correlated to the diameter of the trunk at the tree level.

Figure 5. Comparison of the different MOE measuring methods. MOE were measured using trees, boards or small wood samples as starting material.
(r = -0.08, p > 0.05) or at the clone level (r = -0.22, p > 0.05). At the clone level, MOE ranged between 8880 and 12890 MPa and averaged out to 10881 MPa with a clonal coefficient of variation of 12.7% (in [25], at the clone level, for 5 clones composed of slightly younger trees, trunk MOE ranged from 8400 to 9500 MPa). On all experiments conducted with both versions of the rigidimeter, no relationship was observed between tree diameter and trunk MOE_{eq}.

Because of the good correlation at the clone level between trunk MOE and destructive sample MOE, we conclude that the newly developed device represents thus a mean to rank clones according to their mechanical properties.

In addition, the use of the new method allowed to increase significantly the number of measurements. Indeed, up to 50 trees could be analyzed per day as compared to 20 using Koizumi’s method under the same conditions. Finally, these results allowed us to plan its routine use for larger field tests.

Larch populations:

The newly developed method was applied to 292 trees corresponding to 28 families of hybrid larch (Larix decidua × L. kaempferi).

Repeatability and timing of the measurements

For each tree, the four replicated deformation measurements and calculated MOE were highly reproducible as indicated by a replication coefficient of 0.994. With regard to the rank of each individual determined either according to distortion measurements or to MOE estimations, Kendall’s concord coefficient reached 0.987 (p < 0.001) and 0.951 (p < 0.001), respectively. In addition, these coefficients increased slightly to reach respectively 0.993 (p < 0.001) and 0.970 (p < 0.001) if one considers only the three last measurements.

Setup of the device on previously marked and trimmed trees, measurements of both diameter at 1.3 m and MOE, as well as dismantling and moving to the next tree required 7 to 8 minutes for a team of 3 people. That means that, in good conditions, for well trained technicians, it was possible to measure significantly more than 50 trees per day.

Analysis of variance of the MOE measurements on larch.

Highly significant differences were observed among larch families (F test = 3.3, p < 0.01) and blocks (F test = 2.4, p = 0.01). Mean MOE values determined at the family level were comprised between 5507 and 9148 MPa. In addition to a great individual variability (coefficient of variation = 23%), we detected important differences between families (coefficient of variation = 11.7%).

A significant relationship was found between trunk MOE and wood density at the family level:

\[r = 0.68 \] (p < 0.001). The same type of result was frequently found for relationships between clear sample MOE and sample density (for example [2, 24, 27, 28, 30, 44]. It was more recently found for trunk MOE and density of samples sawn in the trunk [14, 26].

Detailed results about genetic analysis of the data, along with other wood properties, will be published in another paper.

4. CONCLUSION

The accuracy of the device we have developed to measure MOE was confirmed by the results of preliminary tests on metallic beams. Thereafter, we have shown that measurements of MOE could be performed on standing trees and allowed to rank these trees in the same order than destructive techniques based on the use of boards and smaller samples cut off the felled trees and dried. We have shown that, like Koizumi’s machine, the device was able to reveal the existence of significant genetic variation among 2 types of genetic entries (clones and families) for 2 important forest tree species (Douglas-fir and hybrid larch). The new device provides highly reproducible data in a short time. The unit appears reliable to measure trunk deformations even in the case of low-quality surfaces related to bark shape. High pressures can
be developed onto the trunk by the unit in so far it is used during the tree resting period. However, no major damage was noticed on the trees. Finally, the device is compact and composed of a small number of parts. Its weight has been slightly lowered without any effect on its accuracy. It is then easier to handle and more flexible. Since then, minor technical improvements have been realized in order to make the device use easier. Other secondary improvements are planned and will be realized during the next months in order to produce the definitive apparatus.

Measurable tree has a diameter at breast height ranging from less than 10 cm to more than 20 cm. There is no need to fell the tree, nor to collect even a single increment core. It is then especially interesting for all forest tree scientists who need global and not too much time consuming information about mechanical properties of the most valuable part of the stem. Finally, the device is a quite cheap equipment compared to most machines that are used for non-destructive testing of wood quality.

Acknowledgements: We want to thank Frédéric Millier and Michel Vallance, Research Technicians at INRA Orléans, and Frédéric Tardy, Technician at Orléans University, for their help all along this study. We also want to thank the 2 anonymous reviewers, who helped to considerably improve the manuscript.

REFERENCES

