TITLE
NADPH oxidase activity is associated with cardiac osteopontin and pro-collagen type I expression in uremia.

RUNNING HEAD
NADPH oxidase and cardiac protein modifications in uremia.

Authors
Aurélie Goux 1, Christine Feillet-Coudray 2, Bernard Jover 3, Gilles Fouret 4, Anne-Sophie Bargnoux 1,5, Cécile Cassan 4, Sylvain Richard 4, Stéphanie Badiou 1,5, Jean-Paul Cristol 1,5.

Addresses
1 UMR 204 - Prévention des Malnutritions et des Pathologies Associées, IRD, University Montpellier 1 et 2, Montpellier, France
2 EA 3127 - Groupe Rein et Hypertension, Université Montpellier 1, Montpellier, France
3 INRA, UMR 866 - Unité de différenciation cellulaire et croissance, Montpellier, France
4 INSERM U637, CHU Arnaud de Villeneuve Physiopathologie Cardiovasculaire, Montpellier, France
5 Laboratoire de Biochimie, Hôpital Lapeyronie, Montpellier, France

Correspondence: Jean-Paul Cristol, Laboratoire de Biochimie, CHU Lapeyronie, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier cedex 5, France. Phone: +33 467338314. Fax: +33 467338393. Email: jp-cristol@chu-montpellier.fr

Abstract
Cardiovascular disease is a frequent complication inducing mortality in chronic kidney disease (CKD) patients, which can be determined by both traditional risk factors and non-traditional risk factors such as malnutrition and oxidative stress. We aimed to investigate the role of oxidative stress in uremia-induced cardiopathy in an experimental CKD model. CKD was induced in Sprague-Dawley rats by a four week diet supplemented in adenine, calcium and phosphorus and depleted in proteins. CKD was associated with a three-fold increase in superoxide anion production from the NADPH oxidase in the left ventricle, but the maximal activity of mitochondrial respiratory chain complexes was not different. Although manganese mitochondrial SOD activity decreased, total SOD activity was not affected and catalase or GPx activities were increased, strengthening the major role of NADPH oxidase in superoxide anion output. Superoxide anion output was associated with enhanced expression of osteopontin (x 7.7) and accumulation of pro-collagen type I (x 3.7). To conclude, the increased activity of NADPH oxidase during CKD was associated with protein modifications which could initiate a pathway leading to cardiac remodeling.

Keywords: End stage renal failure, adenine diet, oxidative stress, NADPH oxidase.
Introduction

The incidence of chronic kidney disease (CKD) increases constantly in the general population, with a prevalence of about 10% in Europe [1]. The high rate of cardiovascular (CV) complications observed in hemodialysis patients is only partly explained by traditional risk factors, such as aging, gender, hypertension, diabetes, smoking, dyslipidemia and obesity. Indeed, non-traditional risk factors including malnutrition, inflammation and oxidative stress have emerged [2,3]. Protein-energy malnutrition is a common feature during hemodialysis, related in part to the uremic syndrome per se (physical inactivity, controlled diet, anorexia, psychosocial factors) and for a second part to the inflammation and oxidative stress (increased catabolism, increased resting energy expenditure, anorexia) [4,5]. Malnutrition, oxidative stress and inflammation are closely interconnected [2,3] as inflammation and malnutrition induce superoxide anion production through the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system and decrease the antioxidant capacities (vitamins E, C, carotenoids) [3,6].

Uremic cardiomyopathy is characterized principally by left ventricle (LV) dysfunction, present in 50 to 60% of patients and by LV hypertrophy (up to 74% of patients beginning hemodialysis) [7]. Interstitial fibrosis is a constant finding in heart biopsies and could be partly responsible for ventricular arrhythmias and sudden death in these patients [7,8]. Pathological expression of pro-collagen type I or collagen type I, a fibrillar protein of the extracellular matrix, in parallel with unchanged or depressed collagen degradation, characterizes interstitial fibrosis and finally cardiac dysfunction [8,9].

In the heart, the NADPH oxidase system and the respiratory chain complexes of the mitochondria are the two major sources of Reactive Oxygen Species (ROS) [10,11]. When moderate amounts of ROS are produced, it specifically regulates intracellular signaling pathways by reversible oxidation of proteins such as transcription factors or protein kinases [12]. However, when they are produced at high levels, mitochondrial or NADPH-derived ROS can also have deleterious effects by massive and irreversible oxidation of their principal targets (lipids, proteins and DNA). The NADPH oxidase (NOX) system is a membrane associated enzyme composed of five subunits, catalyzing the one electron reduction of oxygen, using as the electron donor NADPH or to a lesser extend NADH [10]. In the heart, the two isoforms NOX2 and NOX4 are present, and both need the regulatory subunit p22-phox to be active [10,13]. To prevent ROS damages, cardiac tissue possess enzymatic antioxidant systems: superoxide dismutase (SOD) enzyme converts superoxide anion to hydrogen peroxide, and hydrogen peroxide can be rapidly removed by glutathione peroxidase (GPx) or by catalase [14]. An imbalance between oxidative stress production and defenses would result in increased cardiac oxidative stress, an event actually thought to be linked to increased risk of LV hypertrophy during CKD [3,10].

This work aimed to evaluate the involvement of oxidative stress in cardiac complications induced by uremia, using an animal model of CKD associated with malnutrition. Chronic renal failure was induced by a diet supplemented in adenine, calcium and phosphorus, and depleted in proteins [15].

Methods

Animals and diets

Eight Sprague-Dawley rats (Elevage Janvier, Le Genest Saint Isle, France) aged of 13 weeks were used. Rats were housed in an air-conditioned room with a standard 12-h light/dark cycle. The rats were randomized into two groups of 4 animals: a control group (control) was fed for 4 weeks a standard diet and an experimental group (adenine) was fed for 4 weeks a semi purified low protein and high adenine, high calcium and high phosphorus diet. Diets were purchased from SAFE (Augy, France). The standard diet contains 3 % fat, 17 % proteins,
60 % carbohydrates, 5 % cellulose, 0.83 % calcium and 0.59 % phosphorus. The adenine diet contained 5 % fat, 3 % proteins, 74.6 % carbohydrates, 7 % cellulose, 0.8 % adenine, 1.13 % calcium and 0.86 % phosphorus. Rats were given free access to water and food. No mortality was observed among both groups.

In physiological conditions, adenine and 5-phosphoribosyl-1-pyrophosphate are converted to AMP by adenine phosphoribosyltransferase (APRT) [16]. APRT deficiency is characterized in human by urolithiasis and kidney disease [17] and animal models with induced APRT deficiency demonstrate the same symptoms, due to the formation of 2,8-dihydroxyadenine by xanthine oxidase [16,17]. The oxidation of adenine by xanthine oxidase leads to precipitation of crystals in the tubules of the kidney, causing a macroscopically observable tubular obstruction [16,18], resulting in an increase of creatinine and urea in the serum as well as a reduction of their urinary excretion [15,18].

In order to measure body growth, urinary excretion, diet and water consumption, rats were housed in metabolic cages; these four parameters were determined daily, and energy intake was calculated. Animals were followed up for tail-cuff blood pressure at day 1, 14 and 28 of experiment and for urinary parameters at day 3, 14 and 28 of experiment. At the end of the 4 weeks of experiment, animals were anesthetized with isoflurane prior to echocardiography. Two days later, animals were anesthetized with sodium pentobarbital (60 mg kg^-1). Blood was taken with a heparinized syringe and centrifuged at 1000 g for 10 min at 4°C. Supernatants were collected and aliquots were frozen in liquid nitrogen, and stored at -80°C until analysis. At sacrifice, hearts were quickly removed and weighted. The LV were isolated, weighted, cut in different pieces and frozen in liquid nitrogen before conservation at -80°C. Heart weight and LV weight were determined to calculate cardiac parameters.

Routine biochemical analyses

Plasma levels of proteins, albumin, urea, creatinine, calcium and inorganic phosphate were measured by routine biochemistry on an AU 640 analyzer (Olympus, Rungis France). Corrected calcium was calculated and took into account albumin concentration ([corrected calcium] = [calcium]_{plasma} + 0.02 x (40-[albumin]_{plasma}). Phosphocalcic product was calculated with the following formula: plasmatic phosphorus concentration multiplied by plasmatic corrected calcium concentration. Lipid parameters (total cholesterol, HDL-cholesterol, triglycerides) and urinary parameters (creatinine, inorganic phosphate) were determined by routine techniques on Architect C8000 (Abbott, Rungis, France). Protein levels in tissue homogenates were measured by the Lowry method (Protein Dc, Bio-Rad Laboratories, Marne la Coquette, France) [19].

Determination of oxidative markers

LV homogenates were prepared on ice in a ratio of 1 g wet tissue for 9 mL phosphate buffer (50 mmol L^-1, pH 7) using an UltraTurax homogenizer, then centrifuged at 1000g for 10 min at 4°C. Supernatant was collected and stored at –80°C until analysis.

Lipid peroxidation levels or thiobarbituric acid-reactive substances (TBARS) were measured in plasma according to the method of Yagi [20] and in tissues homogenates according to the method of Sunderman et al. [21].

Anti-oxidative activities in LV including total and manganese superoxide dismutases (SOD and Mn-SOD) were measured according to the method of Marklund [22]. Catalase and glutathione peroxidase (GPx) activities were measured in tissues according to the methods of Beers and Sizer [23] and of Flohe and Gunzler [24] respectively.
Determination of mitochondrial respiratory chain complex activities in tissue
LV homogenates were prepared as described above. Complex I (CI) activity was measured according to Janssen et al. [25]. Complex II (CII) and complex II+III (CII+III) activities were measured according to Rustin et al. [26]. Cytochrome c oxidase (COX) activity was measured according to Wharton and Tzagoloff [27] and citrate synthase (CS) activity was measured according to Srere [28].

Determination of NADPH oxidase activity
NADPH oxidase superoxide anion production was evaluated in frozen LV as previously described [11]. Briefly, the LV tissues were rinsed in Krebs buffer, homogenized using an Ultra Turrax T25 basic (Irka-Werke) in ice-cold Krebs buffer, then centrifuged at 1000g for 20 min at 4°C. Supernatants were then incubated at 37°C for 30 min in the presence or absence of diphenyleiodonium (DPI, 100 µmol L⁻¹), an inhibitor suppressing NADPH oxidase activity. Lucigenin (final concentration 10 µmol L⁻¹, electron acceptor)-enhanced chemiluminescence was assessed to determine superoxide anion generation after adding excess NADPH (100 µmol L⁻¹), the substrate for NADPH oxidase. The chemiluminescence signals were measured by a microplate luminometer LB96V (Berthold). Results are expressed as relative light units (RLU) and are corrected for protein concentration.

Immunoblotting
Protein expressions were analyzed by immunoblotting as described previously by Sutra T. et al. [29]. Briefly, proteins were extracted from the frozen LV of four rats per group and 50 µg proteins were separated with a SDS-PAGE appropriate to the size of each protein, transferred to a nitrocellulose membrane and blocked over-night at 4°C. Then, membranes were incubated 1 hour at room temperature with primary antibody against p22-phox (1/100), OPN (1/100), collagen type I (1/200) or β-actin (1:1000, loading reference) (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) in blocking buffer. Blots were washed, incubated with secondary antibody (1/5000), washed again and treated with enhanced chemiluminescence detection reagents (ECL, Amersham Biosciences Europe GmbH, Orsay, France). β-actin was used as loading references, and blot intensities were measured using the BIO-Profil 1D software (FisherBioblock).

Echocardiography
Doppler-echocardiography was performed in anesthetized animals (2% Isoflurane, Baxter) with a Vivid?Pro (GE Healthcare, USA) equipped with a 10 MHz transducer. Rats were positioned on their left side.

A two-dimensional view of the LV was obtained at the level of the papillary muscles in a parasternal short axis view [30]. LV morphology parameters were measured from M-mode traces recorded through the anterior and posterior walls [31]. LV shortening fraction was calculated as [(LVId – LVIDs) / LVIDd x 100] were LVIDd and LVIDs are respectively end diastolic and end systolic LV internal dimensions. LV shortening fraction normal range is 40-50% in anesthetized rats. The relative wall thickness [32] was calculated as (AWT + PWT) / LVIDd where AWT and PWT are respectively the LV anterior and posterior wall thickness in diastole.

The cardiac outflow was calculated as HR x VTI x Ao² x π / 4 where HR is the heart rate, VTI is the velocity time integral of the aortic flow assessed by Doppler in a suprasternal view, and Ao is the aorta diameter measured in a long axis view [33]. The cardiac outflow was then normalized to the body weight.
Statistical analysis
Results are expressed as means ± SEM. Statistical analysis was based on the non parametric Mann-Whitney test. Statistical analysis was performed using the Stat View program (SAS Institute, Cary, NC). p< 0.05 was considered statistically significant.

Results
Rat model of adenine induced uremia
At sacrifice time, the adenine group exhibited increases in plasma creatinine and urea when compared to control group (table I). Furthermore, the evolution of urinary creatinine excretion during the experiment showed a significant decline (table II). In term of phosphocalcic metabolism, total and corrected plasma calcium levels were not different in the rats fed the diet containing adenine (table I). A rise in the plasma level of phosphorus was detected (table I), explaining the 3 fold increase in the phosphocalcic product (6.9 ± 0.4 (mmol L⁻¹)² for the control rats versus 19.8 ± 2.6 (mmol L⁻¹)² for the adenine-fed rats, p = 0.02). Regarding to the phosphorus urinary excretion during the time course of the experiment, the adenine fed rats had an excretion 3.5 fold higher at the beginning of the experiment compared to the end (table II).

Nutritional parameters
The average initial weight was 483 ± 4 g for the control rats and 483 ± 4 g for the adenine-fed rats. The control rats gained 8.8 ± 1.8 % of weight (final weight: 526 ± 9 g) and the adenine-fed rats significantly lost 43.7 ± 1.5 % of their initial weight (final weight: 272 ± 7 g). In agreement with this observation, the total cumulated energy intake during the experimental period was 2171 ± 71 kcal for the control rats and 862 ± 47 kcal for the adenine-fed rats (p = 0.02). During the 28 days of diet, the average water consumption (31 ± 6 mL vs. 28 ± 4 mL) and diuresis (19 ± 5 mL vs. 22 ± 3 mL) was not significantly different between control and adenine groups, respectively.

For the nutritional status, table I shows a significant decrease in albumin in adenine diet versus control. By contrast, adenine-fed rats exhibit an increase in total cholesterol compared to controls, which is mainly due to increased non-HDL cholesterol (table I).

Oxidative stress parameters
Plasmatic TBARS measurement demonstrates a 56% increase in lipid oxidation associated to a non significant increase in cardiac TBARS (p = 0.15) (table III).

For cardiac anti-oxidative enzymes, Mn-SOD activity decreases from 30% in LV of adenine fed rats, without difference in total SOD between groups. Catalase and GPx, are increased by 75% and 38% respectively in adenine-fed rats compared to control rats (Table III).

For mitochondrial respiratory complex activities, no difference was observed among the two groups of rats for CI, CII, CII+III, COX, and CS activities (mU x mg⁻¹ protein) in LV (table III).

In LV, a three-fold increase activity of NADPH oxidase was observed in adenine-fed rats (1823 ± 318 RLU x mg⁻¹ protein, stimulated by NADPH) in comparison to control rats (608 ± 50 RLU x mg⁻¹ protein) (table III). However, the expression of the regulatory subunit p22-phox from the NADPH oxidase did not change between the two conditions (figure 1-A).
Cardiovascular features

Tail-cuff blood pressure. As observed in figure 2, blood pressure remained stable for more than 2 weeks. Nevertheless, after four weeks of adenine diet, the tail-cuff blood pressure was slightly elevated of approximately 30 mm of mercury (p=0.02).

![Insert Figure 2 about here](image)

Cardiac function. Hearts were smaller in the adenine-fed rats (0.97 ± 0.06 g versus 1.25 ± 0.02 g for the control rats, p = 0.02). However, LV weight index (LV weight reported to the total body weight) was significantly higher (p=0.02) for the adenine-fed rats (2.60 ± 0.18 mg x g⁻¹) compared to the control rats (1.72 ± 0.07 mg x g⁻¹). As observed with the echocardiography, cardiac morphology, represented by the relative wall thickness, was not different between groups (0.345 ± 0.013 for the control rats versus 0.361 ± 0.009 for the adenine-fed rats, p = 0.39). Cardiac contractility (LV shortening fraction: 41.9 ± 2.5 % for the control rats versus 43.4 ± 2.6 % for the adenine-fed rats, p = 0.77) and cardiac outflow (0.300 ± 0.024 cm³ min⁻¹ x g⁻¹ for the control rats versus 0.277 ± 0.021 cm³ min⁻¹ x g⁻¹ for the adenine-fed rats, p = 0.48) were not affected after 4 weeks of experiment.

LV protein expression. As observed in figure 1-B and 1-C, OPN expression and pro-collagen type I expression are significantly increased in adenine-fed rats in comparison to controls from 7.7-fold and 3.7-fold respectively. Collagen type I expression (figure 1-D) is not significantly different between groups.

![Insert figure 1 about here](image)

Discussion

Our results, using a relevant rat model of uremia associated with malnutrition, strongly suggest that superoxide anion over-production mainly due to NADPH oxidase activity could be involved in OPN and pro-collagen type I expression.

Interestingly, this model could mimic the MIA syndrome which has emerged as a key non-traditional risk factor in end stage renal disease [2,4,5]. Malnutrition, demonstrated by the dramatic weight loss, decrease in caloric intake and hypoalbuminemia, was associated with uremia in the adenine-fed rats as previously reported [15,18].

During the last decade, oxidative stress, which is closely related to malnutrition, has emerged as a potential determinant of cardiovascular diseases in hemodialysis patients [34]. Lipid oxidative modifications are present in plasma and to a lesser extend in LV of uremic rats, as proven by increase in TBARS. In the LV, oxidative modifications could be dependent on the NADPH oxidase, as our results clearly show a three-fold increase in NADPH oxidase superoxide anion production. By contrast, mitochondrial contribution to oxidative stress could not be retained in our model, since the maximal activities of mitochondrial respiratory chain complexes were not altered. These observations extend a previous report showing that cardiac NADPH oxidase activity is increased four-fold in nephrectomized rats, but neither mitochondria, nor cardiac functionality were estimated in this study [35]. The specificity of the NADPH oxidase system in the heart has also been determined in obesity and metabolic syndrome [11,29].

In order to counterbalance oxidative modifications, antioxidant systems act for the clearance of ROS [14,36]. Heart antioxidant systems are very effective, as the high production in superoxide anion only slightly affect oxidative markers. SOD, the superoxide anion scavenging system in LV, is not affected by uremia. However, the mitochondrial SOD (MnSOD), responsible for neutralisation of mitochondrial superoxide anion or for mitochondrial...
protection from external production of ROS [36], was decreased. As no modification of the maximal activities of mitochondrial respiratory chain complexes was observed, alteration of Mn-SOD activity probably reflects a decrease in mitochondrial protection from external production of ROS. The two other scavenging systems, namely catalase and GPx, involved in heart protection from ROS and reactive chlorine species [36], increase concomitantly to NADPH oxidase activity. Taken together, the increase NADPH oxidase activity, in association with the maintenance of global anti-oxidative enzyme system, confirms the role of NADPH oxidase in superoxide output.

Increase superoxide anion output resulting from increase NADPH oxidase activity could account for de novo OPN and pro-collagen type I expression, a signaling pathway probably involving ERK ½ and implicated in the development of cardiac complications [29,37]. In addition, in mice lacking gp91phox (catalytic subunit of NOX2), stimulation with angiotensin II induces neither cardiac collagen over-expression, nor cardiac hypertrophy [38]. OPN, a non-collagenous matricellular protein regulating cell to extracellular matrix interactions, is missing from our control rats’ LV in agreement with the review of Okamoto H. [37,39]. Its expression, low or absent in normal postnatal life, is concomitant with the development of heart failure and appears in response to pressure or metabolic disorders [39,40]. OPN is secreted by fibroblasts and cardiomyocytes among others and could be stimulated by the superoxide anion produced by NADPH oxidase [29,37]. OPN induces pro-collagen type I synthesis by fibroblasts, which is processed in mature fibers of collagen type I by removal of N and C-terminal propeptides by Bone Morphogenetic Protein 1 (BMP-1) [9,41]. This extracellular matrix rearrangement is associated with extended areas of fibrosis in mice heart [9]. To support that, mice lacking OPN develop neither pro-collagen or collagen deposition, nor cardiac fibrosis [29,37,39]. In our model, processing of pro-collagen type I to collagen type I and fibrosis induction would maybe occurs in a longer term experiment. As demonstrated in the liver, an induction of OPN as early as day one of experiment, results in fibrosis after 8 weeks of experiments, with a continuous increase in pro-collagen type I from one to four weeks of experiment [42].

Finally, despite LV weight index suggests LV hypertrophy, no clear cardiac alteration (morphology, function or contractility) was observed in this experimental model at the time of echocardiographic examination. The dramatic loss of body weight was a major confounding factor in this phenomenon. However, the cardiac protein pattern expression has already been associated with LV hypertrophy in previous studies [11,29]. Hypertension, which has been previously related to increased heart NADPH oxidase activity [43,44], is currently considered as a risk factor of CV disease and myocardial fibrosis [8]. However, the delayed increase in blood pressure, previously reported in rat model of renal failure [45], occurring between two and four weeks of experiment, leads to a short exposure to hypertension, probably not long enough to induce cardiac modifications. LV hypertrophy, fibrosis and abnormal cardiac functionality resulting from pro-fibrosis protein expression and elevated blood pressure may develop later.

This study does not exclude an effect of malnutrition in OPN and pro-collagen type I expression; it has been proved that a methionine and choline depleted diet could induce liver OPN expression and liver fibrosis [42]. However, the oxidative stress hypothesis in uremia induced cardiopathy is further supported by the efficiency of dl-α-tocopherol to prevent cardiac fibrosis in nephrectomized rats [45]. Other treatments with enalapril or paricalcitol in nephrectomized rats were able to decrease cardiac oxidative stress but functional or morphologic effects were not assessed [35]. Cardiac complications during uremia deserve further study to fully elucidate the place of oxidative stress in uremic cardiomyopathy.

The major finding of this study demonstrates that the occurrence of oxidative stress in our model of uremia associated to malnutrition is accompanied with OPN and pro-collagen
type I expression, two potential profibrotic factors that could be involved in future cardiac remodeling. A longer term experiment is needed to determine the functional consequences of cardiac oxidative stress and second, pathology prevention using NADPH oxidase or tempol should be investigated.

declaration of interest

None to declare.

references

Tables

Table I: Evidence of uraemia and metabolic disorder at sacrifice time

<table>
<thead>
<tr>
<th>Plasma measurement</th>
<th>Control diet (n=4)</th>
<th>Adenine diet (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea (mmol L(^{-1}))</td>
<td>4.78 ± 0.63</td>
<td>64.85 ± 14.02 (^{a})</td>
</tr>
<tr>
<td>Creatinine (µmol L(^{-1}))</td>
<td>39.5 ± 8.2</td>
<td>602.8 ± 132.9 (^{a})</td>
</tr>
<tr>
<td>Corrected calcium (mmol L(^{-1}))</td>
<td>2.88 ± 0.04</td>
<td>2.92 ± 0.03</td>
</tr>
<tr>
<td>Phosphorus (mmol L(^{-1}))</td>
<td>2.39 ± 0.09</td>
<td>6.74 ± 0.83 (^{a})</td>
</tr>
<tr>
<td>Albumin (g L(^{-1}))</td>
<td>26.3 ± 0.6</td>
<td>23.0 ± 0.7 (^{a})</td>
</tr>
</tbody>
</table>

Lipids

- **TC (mmol L\(^{-1}\))**
 - Control diet: 1.68 ± 0.08
 - Adenine diet: 2.69 ± 0.20 \(^{a}\)
- **HDL-c (mmol L\(^{-1}\))**
 - Control diet: 0.588 ± 0.042
 - Adenine diet: 0.693 ± 0.054
- **Triglycerides (mmol L\(^{-1}\))**
 - Control diet: 0.663 ± 0.131
 - Adenine diet: 0.745 ± 0.137
- **n-HDL-c (mmol L\(^{-1}\))**
 - Control diet: 1.10 ± 0.04
 - Adenine diet: 2.00 ± 0.17 \(^{a}\)

HDL-c: High-Density Lipoprotein Cholesterol; n-HDL-c: non HDL Cholesterol; TC: Total Cholesterol. Values are mean ± S.E.M. (n = 4). \(^{a}\) Mann-Whitney test significantly different from control at p < 0.05.

Table II: Urinary phosphorus and creatinine excretion evolution during the time course of the experiment

<table>
<thead>
<tr>
<th>Urinary parameters</th>
<th>Control diet (n=4)</th>
<th>Adenine diet (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine (mmol 24h(^{-1}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>0.104 ± 0.022</td>
<td>0.126 ± 0.005</td>
</tr>
<tr>
<td>Day 14</td>
<td>0.141 ± 0.001</td>
<td>0.078 ± 0.010 (^{a})</td>
</tr>
<tr>
<td>Day 28</td>
<td>0.121 ± 0.012</td>
<td>0.042 ± 0.004 (^{a})</td>
</tr>
</tbody>
</table>

Phosphorus (mmol 24h\(^{-1}\))		
Day 3	0.142 ± 0.049	0.518 ± 0.026 \(^{a}\)
Day 14	0.089 ± 0.039	0.282 ± 0.009 \(^{a}\)
Day 28	0.084 ± 0.031	0.152 ± 0.011

Values are mean ± S.E.M. (n = 4). \(^{a}\) Mann-Whitney test significantly different from control at p < 0.05.
Table III: Oxidative stress parameters

<table>
<thead>
<tr>
<th></th>
<th>Control diet (n=4)</th>
<th>Adenine diet (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmatic oxidative stress parameters</td>
<td>TBARS (µmol L⁻¹)</td>
<td>1.79 ± 0.11</td>
</tr>
<tr>
<td>Cardiac oxidative stress parameters</td>
<td>TBARS (nmol x mg⁻¹ protein)</td>
<td>0.563 ± 0.047</td>
</tr>
<tr>
<td>Cardiac anti-oxidative enzymes</td>
<td>SOD (U x mg⁻¹ protein)</td>
<td>15.0 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>Mn-SOD (U x mg⁻¹ protein)</td>
<td>4.07 ± 0.48</td>
</tr>
<tr>
<td></td>
<td>Catalase (U x mg⁻¹ protein)</td>
<td>26.3 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>GPx (mU x mg⁻¹ protein)</td>
<td>2176 ± 86</td>
</tr>
<tr>
<td>NADPH oxidase activity</td>
<td>superoxide anion (RLU x mg⁻¹ protein)</td>
<td>608 ± 50</td>
</tr>
<tr>
<td>Mitochondrial activity</td>
<td>CS (mU x mg⁻¹ protein)</td>
<td>2 696 ± 124</td>
</tr>
<tr>
<td></td>
<td>CI (mU x mg⁻¹ protein)</td>
<td>541 ± 32</td>
</tr>
<tr>
<td></td>
<td>CII (mU x mg⁻¹ protein)</td>
<td>1 108 ± 23</td>
</tr>
<tr>
<td></td>
<td>CII + III (mU x mg⁻¹ protein)</td>
<td>420 ± 73</td>
</tr>
<tr>
<td></td>
<td>COX (mU x mg⁻¹ protein)</td>
<td>187 ± 30</td>
</tr>
</tbody>
</table>

TBARS: thiobarbituric acid-reactive substances; SOD: superoxide dismutase; Mn-SOD: manganese-SOD; GPx: glutathione peroxidase; RLU: relative light units; CS: citrate synthase; CI: complex I; CII: complex II; CII+III: complex II+III; COX: cytochrome c oxidase. Values are mean ± S.E.M. (n = 4). a Mann-Whitney test significantly different from control at p < 0.05.
Figure captions

Figure 1

Figure 1: Expression of cardiac proteins in left ventricle: p22-phox (A), osteopontin (B), pro-collagen type I (C) and collagen type I (D). OPN: osteopontin, coll-I: collagen type I, pro-coll-I: pro-collagen type I. Values are mean ± S.E.M. (n = 4). a Mann-Whitney test significantly different from control at p < 0.05.

Figure 2

Figure 2: Tail-cuff blood pressure follow-up. Values are mean ± S.E.M. (n = 4). a Mann-Whitney test significantly different from control at p < 0.05.