Are the lowest-cost healthful food plans culturally and socially acceptable?

Matthieu Mailot1,2,3, Nicole Darmon1,2,3 and Adam Drewnowski4,*

1INSERM U476, UMR1260, Nutriments Lipidiques et Prévention des Maladies Métaboliques, Marseille, France: 2INRA, 1260, Marseille, France: 3Faculté de Médecine, Université Aix-Marseille, IPHMFR 125, Marseille, France: 4Nutritional Sciences Program and Center for Public Health Nutrition, School of Public Health, University of Washington, Seattle, WA 98195-3410, USA

Submitted 11 February 2009: Accepted 11 November 2009

Abstract

Objective: Nutritious yet inexpensive foods do exist. However, many such foods are rejected by the low-income consumer. Is it because their use violates unspoken social norms? The present study was designed to assess the variety and cost of the lowest-cost market basket of foods that simultaneously met required dietary standards and progressively stricter consumption constraints.

Design: A mathematical optimisation model was used to develop the lowest-cost food plans to meet three levels of nutritional requirements and seven levels of consumption constraints.

Subjects: The nationally representative INCA (National Individual Survey of Food Consumption) dietary survey study of 1332 adults provided population estimates of food consumption patterns in France. Food plan costs were based on retail food prices.

Results: The lowest-cost food plans that provided 9204 kJ/d (2200 kcal/d) for men and 7531 kJ/d (1800 kcal/d) for women and met specified dietary standards could be obtained for <1.50 €/d. The progressive imposition of consumption constraints designed to create more mainstream French diets sharply increased food plan costs, without improving nutritional value.

Conclusions: Minimising diet costs, while meeting nutrition standards only, led to food plans that provided little variety and deviated substantially from social norms. Aligning the food plan with mainstream consumption led to higher costs. Food plans designed for low-income groups need to be socially acceptable as well as affordable and nutritious.

By necessaries I understand, not only the commodities which are indispensably necessary for the support of life, but whatever the custom of the country renders it indecent for creditable people, even of the lowest order, to be without.

Adam Smith, 1776(1)

Lower-income groups have poor diets(2) and suffer from higher rates of obesity and chronic disease(3). Food, health and incomes may be linked through food prices and diet costs(4). Refined grains, fats and sweets are affordable, accessible and convenient(5). By contrast, many nutrient-rich foods cost more and are consumed by more affluent persons(5). One barrier to the adoption of healthful diets by the lower-income groups may be diet cost(6,7).

Arguably, not all healthful foods cost more(8). Some nutrient-rich foods can be obtained at very low cost. Recipes and tips for healthy thrifty meals have featured ground turkey, chickpeas and condensed or powdered milk(9). Home-cooked lentil soup and inexpensive rice and beans have been proposed as suitable staple diets for the US poor(10). Nuts, seeds, legumes, cereals, carrots, potatoes and cabbage offer good nutrition at an affordable cost(11). The search for affordable nutrient-rich foods is being aided further by the new techniques of nutrient profiling(12) and by the new metrics of nutrients per energy and nutrients per unit cost(11).

However, many low-cost yet nutritious foods are rejected by the consumer. The present hypothesis is that such foods deviate from the current consumption standards; fail to meet cultural requirements, and may be socially or culturally inappropriate. The custom of the country – to borrow a phrase from Adam Smith – may place such foods or diets outside the accepted social norms. In striving to meet nutrient requirements at minimum cost, the search for lowest-cost healthful diets may have ignored the current eating habits of the population.
Mathematical optimisation models have shown for a long time that nutritious diets could be obtained at very low cost\(^{(13,14)}\). The USDA Thrifty Food Plan (TFP) model creates a diet that is as similar as possible to the current diet of low-income Americans, while simultaneously meeting a fixed set of nutritional and cost constraints\(^{(15,16)}\). Upper and lower bounds on food energy are based on the Institute of Medicine energy requirements, whereas nutrient and food group constraints are based on the Dietary Guidelines for Americans and on MyPyramid, respectively. The cost constraint keeps computer-generated diets below the target cost. To arrive at the optimisation solution, the TFP tolerates up to tenfold deviations from the current eating habits.

The present study reversed the situation in that the model minimised cost, while meeting different sets of nutritional and consumption constraints. Instead of meeting a single set of nutrition constraints, the model created food plans that met three sets of nutritional constraints of progressive severity. The intent was to determine whether healthier diets cost more. In addition, significant deviations from the mainstream French diet were progressively disallowed. Seven levels of increasingly stringent consumption constraints ensured that the final model had little tolerance for any deviation from the French mainstream eating habits. The intent was to estimate the cost of healthful diets that were also consistent with French cultural expectations and societal norms.

Methods

Dietary data, food composition database and food prices

The input data used in the present analysis were based on data collected in a cross-sectional dietary survey of a nationally representative sample of 1985 French adults (INCA; National Individual Survey of Food Consumption survey), aged 15–92 years, conducted in 1999 by the French National Agency for Food Safety\(^{(17)}\). Usual food intakes were estimated using a 7 d food record completed by all participants, aided by a photographic manual of portion sizes\(^{(18)}\). Participants who under- or over-reported their energy intake (284 men and 312 women), according to Black’s method\(^{(19)}\), were removed from the sample. The physical activity level assumed in the calculation of the threshold was 1·55, corresponding to seated work with low walking and leisure activity. The final sample\(^{(15)}\) of 1332 participants aged between 15 and 92 years included 596 men and 736 women.

After excluding diet beverages, tea, coffee, dietary supplements and drinking water, a total of 614 different foods were declared as consumed by the participants. Their nutritional composition, expressed per 100 g of edible portion, and their edible conversion factors were computed from the INCA food composition database\(^{(20)}\), or from other databases\(^{(22–25)}\). A column of French mean national 1997 retail prices primarily obtained from marketing research (SECODIP) was added to nutrient composition table. The prices were those paid by a representative panel of French consumers; therefore, the mean price reflected the most frequently purchased forms of each food. The prices were obtained for the foods ‘as purchased’, whereas the nutrient contents were based on the food ‘as consumed’. To adjust for preparation and waste and to have a common mode of expression for price and for nutrients, retail prices were converted into prices per 100 g of edible food, based on the edible conversion factors of each food.

The foods were aggregated into seven major food groups (meat, fruit and vegetables, mixed dishes and snacks, dairy, starches and grains, sweets and salted snacks and added fats), twenty subgroups (e.g. subgroups in the fruit and vegetable group were fruits, vegetables and dried fruits) and thirty-six families (e.g. families in the fruit subgroup were fresh fruits, fruit juices and other processed fruits). The recipes used to calculate the nutrient composition of mixed dishes were derived from the SUVIMAX food composition database\(^{(21)}\).

Mathematical diet optimisation model

The principle of diet modelling with linear programming has been explained before\(^{(26)}\), and the characteristics of the optimisation models used in the present study were also published\(^{(12)}\).

All linear programming models and statistical analyses were performed using the Operational Research Package of the SAS statistical software package version 9·2 (SAS Institute Inc., Cary, NC, USA).

Creation of twenty-one food plans per gender

Linear programming models were used to create twenty-one different food plans for men and women, meeting three sets of nutritional and seven sets of consumption constraints. All diets were isocaloric as the model-fixed dietary energy at 9204 kJ/d (i.e. 2200 kcal/d) for men and 7531 kJ/d (i.e. 1800 kcal/d) for women. The optimisation process yielded a suggested food plan that consisted of quantities of different foods selected into the market basket from a pool of 614 foods (i.e. the number of foods in the food database). Total diet cost was minimised to obtain the lowest-cost food plans that fulfilled all the constraints introduced in each linear programming models and were presently developed to select twenty-one isocaloric diets for each gender at minimal cost that differed in the nutritional (three sets) and consumption (seven sets) constraints.

Objective function

The chosen ‘objective function’ of the model ensured that the food plan basket was at minimal cost. Variables in the objective function were represented by the quantity of the
Diet cost and social norms

614 food items. Each item was linked to the nutrient composition and cost database.

The objective function Z was minimized:

$$Z = \sum_{j=1}^{614} c_j Q_j$$

where Q_j was the quantity of food j in the modelled food basket plan; c_j was the cost of 1 g of food j.

Nutritional constraints

Table 1 shows three levels of progressively more stringent nutritional constraints. Level A ensured that the food plans were consistent with guidelines for macronutrients. Level B ensured that the food plans were consistent with guidelines for macronutrients and with the French estimated average requirements for twenty-five additional nutrients. Level C ensured that the food plans were consistent with the macronutrient guidelines and with the recommended dietary allowances (RDA) for each of the twenty-five nutrients. Levels B and C introduced additional limits on the consumption of saturated fats, added sugars and sodium, and set safe upper limits on the consumption of nine additional nutrients.

Consumption constraints

Table 2 shows seven levels of progressively more stringent consumption constraints, based on the observed distribution of food intakes in the referent INCA population, calculated for men and women separately. These constraints were progressively applied to the seven major food groups, twenty food subgroups and thirty-six food categories.

Level 1 imposed no constraints on food choice. A Level 2 constraint was that the amount of energy provided by each of the seven major food groups fit between the 5th and the 95th percentiles of intake for that food group by the reference population. Levels 3 and 4 cumulatively extended that constraint to the twenty food subgroups and to the thirty-six food categories, respectively. Level 5 placed the upper bound on consumption, such that the amount of food in the optimised food plan could not exceed the 95th percentile limit for that food in the

Table 1 Description of nutritional constraints introduced in linear programming models, separately for men and women

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kJ/d)</td>
<td>Men</td>
</tr>
<tr>
<td></td>
<td>9204*</td>
</tr>
<tr>
<td>Proteins (g/d)</td>
<td>≥70*</td>
</tr>
<tr>
<td>Carbohydrates (g/d)</td>
<td>≥275*</td>
</tr>
<tr>
<td>Lipids (g/d)</td>
<td>≥86*</td>
</tr>
<tr>
<td>SFA (g/d)</td>
<td>≤25*</td>
</tr>
<tr>
<td>Added sugars (g/d)</td>
<td>≤55*</td>
</tr>
<tr>
<td>Sodium (mg/d)</td>
<td>≤2365*</td>
</tr>
</tbody>
</table>

Fibre (g/d)	≥19	≥19
Linoleic acid (g/d)	≥7.7	≥7.7
Linolenic acid (g/d)	≥1.5	≥1.5
DHA (g/d)	≥0.09	≥0.09
Vitamin A (µg/d)	–	–
Retinol (µg/d)	≥308	≥308
β-Carotene/6 (µg/d)	≥308	≥308
Thiamin (mg/d)	≥1.00	≥1.00
Riboflavin (mg/d)	≥1.2	≥1.2
Niacin (mg/d)	≥11.0	≥11.0
Vitamin B6a (mg/d)	≥3.9	≥3.9
Vitamin B6b (mg/d)	≥1.4	≥1.4
Folates (µg/d)	≥254	≥254
Folate B12 (µg/d)	≥1.8	≥1.8
Ascorbic acid (mg/d)	≥85	≥85
Vitamin E (mg/d)	≥9.2	≥9.2
Vitamin D (µg/d)	≥2.3	≥2.3
Calcium (mg/d)	≥693	≥693
Potassium (mg/d)	≥2387	≥2387
Iron (mg/d)	≥6.9	≥6.9
Magnesium (mg/d)	≥323	≥323
Zinc (mg/d)	≥9.2	≥9.2
Copper (mg/d)	≥1.5	≥1.5
Iodine (mg/d)	≥116	≥116
Selenium (µg/d)	≥46	≥46

EAR, estimated average requirement; **RDA**, recommended dietary allowances.

*Constraint included in level A (achievement of macronutrient recommendations).
†Constraint included in level B (achievement of macronutrient recommendations plus estimated average requirements).
‡Constraint included in level C (achievement of macronutrient recommendations plus recommended dietary allowance).
referent population. Level 6 introduced the additional constraint that foods consumed by only a small minority of the French population and therefore, by definition, not a part of mainstream eating habits, could not be a part of the optimised food plans. Accordingly, foods consumed by less than 2.5% of the referent French population were removed. This led to the removal of 314 of the original 614 foods. Level 7 imposed the final and most stringent constraint that foods consumed by less than 5% of the referent French population were removed from consideration by the optimisation model. That led to the removal of 429 of the 614 foods. All the constraints, cumulatively imposed at each higher level, ensured that the resulting computer-optimised food plan would closely resemble the mainstream French diet, with progressively less tolerance for any deviation from the current patterns of consumption.

Results

Figure 1 shows, separately for women and men, that the progressive application of nutritional recommendations increased the lowest achievable food plan costs. Plans that met the more rigorous nutritional constraints did cost more. Although food plans fulfilling all the RDA requirements (level C diets) could be obtained for as little as 1.50 €/d, the low cost was achieved only if consumption constraints were ignored (consumption levels C1 to C3).

Entering the increasingly stringent consumption constraints into the model led to dramatic changes in the resulting cost and variety of the optimised food plans. Not only did the food plans become more costly, but also the cost of a market basket of foods that was consistent with the mainstream French diet far outweighed the cost of meeting the nutritional constraints alone. The cost of food plans meeting consumption level 7 constraints (C7) was several times that of plans that tolerated more substantial deviations from current consumption patterns. The lowest achievable cost of level C7 food plans was 3.40 €/d for men and 3.20 €/d for women, almost ten times the amount calculated for the lowest cost level A1.

Furthermore, as indicated in Fig. 1, there was an interaction between nutritional and consumption constraints. As long as the model imposed no consumption constraints or tolerated a high degree of deviation, the difference in cost between the less nutritious and more nutritious food plans did not exceed 100%. Once the stringent consumption constraints were imposed and the diet resembled more what people actually eat, the cost of healthier diets more than doubled, relative to less healthy ones.

The variety of foods in the market basket was also affected by the two sets of constraints (Fig. 1). The number

<table>
<thead>
<tr>
<th>Levels</th>
<th>Added consumption constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>The energy contributed by each food group was limited to between the 5th and 95th percentiles of the population distribution</td>
</tr>
<tr>
<td>3</td>
<td>The energy contributed by each food subgroup was limited to between the 5th and 95th percentiles of the population distribution</td>
</tr>
<tr>
<td>4</td>
<td>The energy contributed by each food family was limited to between the 5th and 95th percentiles of the population distribution</td>
</tr>
<tr>
<td>5</td>
<td>The amount of each food does not exceed the 95th percentile of quantities consumed by adults (men or women) who consumed the food</td>
</tr>
<tr>
<td>6</td>
<td>Exclusion of foods consumed by less than 2.5% of the population (i.e. 326 foods among 614)</td>
</tr>
<tr>
<td>7</td>
<td>Exclusion of foods consumed by less than 5% of the population (i.e. 409 foods among 614)</td>
</tr>
</tbody>
</table>

*For a given level / of consumption constraints (with / varying from 1 to 7), the constraints included in the level /−1 are retained, and the constraint specific to level / is added.
of foods always increased from A to C, at each level of
consumption constraints so that the higher-quality food
plans were always associated with greater variety. For each
level of nutritional constraint, the imposition of consump-
tion constraints led to a greater variety of foods until level 5
with a drop observed at levels 6 and 7. It was then that the
foods consumed by less than 2.5% and 5% of the total
population were excluded, respectively. In most lowest-
cost food plans, whole grains, lean meats, seafood, whole
fruit and salad greens were missing altogether.

Table 3 shows the market baskets for women at dif-
ferent levels of nutrition and consumption constraints. In
general, food plans that deviated most from the usual
eating habits consisted of a small number of foods, pro-
vided in large amounts. Typically, those plans were based
on grains, cereals, vegetable oils and sweets. Thus, the
minimal cost level A1 plan for women consisted of only
three foods: porridge, sugar and vegetable oil (Table 3).
The minimal cost level C1 plan consisted of twelve
foods (porridge, pasta, semolina, mashed potatoes, wheat
germ, carrots, radishes, chicken livers, grilled herring,
low-fat milk and vegetable oil). In other plans, nutritional
adequacy was assured through large quantities of in-
expensive carrots and low-fat milk, as well as organ meats
(liver and brains) and herring.

Discussion

Diet optimisation programmes are mathematical tools that
are used to create healthful food plans at an affordable
cost15,20,29. In the United States, such programmes have
been used to set the official estimates of the lowest cost of
a nutritious diet. For example, the official USDA food
plans are generated by an optimisation programme that
selects a diet that closely resembles the observed con-
sumption patterns of the low-income population, while
simultaneously meeting cost targets as well as nutrition
and other constraints15,36. The lowest-cost USDA Thrifty
Food Plan, most recently updated in 2007, is then used to
set the benefit levels for the Supplemental Nutrition
Assistance Program, previously known as food stamps. In
2007, the TFP cost per week was estimated at US $32-20
for women and $35-80 for men30.

Mathematical models, faced with multiple constraints,
do not always achieve a perfect fit. The new TFP market
baskets are no exception: the USDA documentation
acknowledges that they did not meet the vitamin E
and potassium recommendations for some age–gender
groups and did not meet the sodium recommendation for
many age–gender groups30. To do so, the low-cost
market baskets would have had to deviate very sub-
stantially from the typical consumption patterns (in the
case of vitamin E and potassium) or would have required
changes in food manufacturing practices (in the case of
sodium)30. According to the USDA documentation, it
was practically impossible to develop the low-cost TFP
market baskets that met the sodium recommendation.

While nutrition and cost constraints of optimisation
models have received most research attention, consump-
tion constraints have not. In the TFP, the lower bound
for consumption was set close to zero for most good
groups, whereas the upper bound varied by food category,
depending on average consumption16. Generally,
the upper bounds were three to ten times average
consumption. This was carried out, in part, to accom-
modate policy goals. For example, although the popula-
tion average consumption for whole grains was near
zero, the 2005 Dietary Guidelines for Americans specified
that half of all grain consumption should be from
wholegrains. As a result, the TFP had to tolerate high
deviance from the usual eating patterns. According to the
USDA documentation, the TFP basket for the family of
four contained more vegetables (137%), milk products
(125%), fruit (115%) and grains (16%) and less fats, oils
and sweets (~83%) than the observed consumption
patterns of the referent group.

The present study set out to determine the cost of
market baskets that were not only nutritious but also
consistent with mainstream French diet. The present
innovation was to let consumption constraints vary over a
wide domain (seven levels), coming closer each time to
the average French population diet. The upper bounds
were not permitted a tenfold increase from average
consumption; instead the upper bound was the 95th
percentile limit for the population intakes. These limits
were progressively applied to food groups, food sub-
groups and food families for a much tighter fit between
the optimised food plan and the typical French diet. At
the strictest level, foods consumed by less than 5% of
the population were excluded from the model.

Systematic reduction of the distance between current
consumption and the optimised food plans led to higher
monetary costs. What is more, those higher costs far
exceeded those of a more nutritious diet. Nutritious
market baskets that corresponded to the population eat-
ing habits cost several times more than market baskets
that provided nutrition but ignored cultural requirements
and social norms. It turns out that maintaining cultural
norms was just as, if not more, expensive than improving
the nutritional quality of the diet. The question arises
whether other lowest-cost market baskets achieve their
cost targets by ignoring or tolerating large differences
from social norms.

Some similarities and differences with the official USDA
food plans must be noted. Similar to the USDA food
plans31, the study was based on retail food prices and
not expenditures. Unlike the TFP, the objective function
minimised diet cost instead of minimising the difference
between the modelled diet and existing food habits. Unlike
the TFP, the present model used only nutrient-based con-
straints and did not employ MyPyramid food category
<table>
<thead>
<tr>
<th>Food groups</th>
<th>First level of required nutritional constraints (A) Consumption constraints 1, 5 and 7</th>
<th>Third level of required nutritional constraints (C) Consumption constraints 1, 5 and 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A5</td>
</tr>
<tr>
<td>Added fats</td>
<td>Oil</td>
<td>Oil (2), butter, margarine, mayonnaise and salad dressing</td>
</tr>
<tr>
<td></td>
<td>Refined grains</td>
<td>Porridge, toast, rusk, pasta and semolina</td>
</tr>
<tr>
<td></td>
<td>Starches and wholegrains</td>
<td>Peas (dry) and potatoes (2)</td>
</tr>
<tr>
<td></td>
<td>Vegetable</td>
<td>Peanuts, avocado and coconut (dry)</td>
</tr>
<tr>
<td></td>
<td>Fruits and nuts</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Meats, eggs and fish</td>
<td>Eggs, fish cake, pork liver pâté, beef heart and sausage</td>
</tr>
<tr>
<td></td>
<td>Dairy</td>
<td>Low-fat powdered milk and low-fat milk</td>
</tr>
<tr>
<td></td>
<td>Sweets</td>
<td>Sugar</td>
</tr>
<tr>
<td></td>
<td>Mixed dishes</td>
<td>Pasta w/cheese</td>
</tr>
</tbody>
</table>

Number of foods in the same subcategory (e.g. potatoes) is indicated in parentheses.
Diet cost and social norms

Although the TFP’s use of fifty-eight food categories, the present market basket was based on >600 individual foods. In reality, each participant in the INCA survey consumed <50 different foods per week. Tailoring the food plan to the eating habits of each individual is an alternative and more sophisticated approach that could yield different results. In the present study, consumption constraints were introduced and progressively reinforced, whereas in the TFP, consumption constraints were fixed and it was the cost constraint that was introduced at different levels of severity.

The present data shed new light on the argument whether nutritious diets cost more than less nutritious ones. Food choices are a part of social identity, and the ability to adhere to a socially acceptable diet is one of the necessities of life. All too often, the low cost of powdered milk, ground pork, organ meats, beans, lentils, carrots and cabbage is cited as proof that low-income groups have full access to inexpensive yet nourishing foods. Persistent failures by low-income households to construct staple diets based around such foods have been explained in the past by a lack of motivation, lack of nutrition knowledge, lack of education or time or simply bad lifestyle choices by the poor. The present data suggest that the low cost of such diets is achievable only by tolerating a departure from social norms.

Studies on dietary change ought to take such norms into account. For example, intervention studies have persistently claimed that more healthful diets need not cost more and might even cost less. On the other hand, observational studies of populations have associated freely chosen healthful diets with higher energy-adjusted diet costs. It would be good to see whether the low-cost healthy diets that are introduced by researchers into schools and workplaces are sustainable in the long term.

Other factors, not covered in the present study, may involve time poverty and food preference. Studies have noted that many of the USDA recipes were time consuming when cooked from scratch, a situation remedied by providing recipes in the 2006 TFP that included more convenience foods. Interestingly, the premise underlying the official USDA food plans is that all foods are purchased at stores and cooked and prepared at home. Arguably, using lowest-cost food plans to calculate food assistance for the poor does not take into account time constraints and the need (or right) to eat away from home, consistent with broader societal trends.

Conclusion

Food budgets of the poor are often insufficient to assure a balanced diet. Even with efficient purchasing strategies, the food budget may not suffice for a diet that is both nutritious and socially acceptable. Although some nutritious foods are inexpensive, conforming to societal norms also has a price. Calculations of the minimum cost of a nutritious diet need to take social and cultural factors into account.

Acknowledgements

The present study was carried out with the financial support of the French National Research Agency under the projects ANR-07-PNRA-018, ALIMINFO and ANR-05-PNRA, 012, POLNUTRITION and with support from USDA CSREES Grant 2004-35215-14441 and NIH grant R01 DK076608. There were no conflicts of interest. M.M. and N.D. conceived the study, conducted data and modelling analyses, interpreted the results and participated in the writing of the report. A.D. participated in the conception and design of the study, interpreted the results and contributed substantially to writing the report. The authors declare no conflict of interest.

References

43. Maillot M, Darmon N, Vieux F et al. (2007) Low energy density and high nutritional quality are each associated with higher diet costs in French adults. *Am J Clin Nutr* 86, 690–696.

