Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity

Stéphane Hacquard¹, Hiroyuki Takahara², Anja Kombrink³, Bleddyn Hughes¹, Kei Hiruma⁴, Vivek Halder¹, Guillaume Robin⁵, Tomonori Shinya⁶, Ulla Neumann¹ and Richard O’Connell¹⁵

¹Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
²Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Ishikawa, Japan
³Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
⁴Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
⁵UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
⁶Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan

The genome of the hemibiotrophic fungus, Colletotrichum higginsianum, encodes a large repertoire of secreted effectors (10) containing LysM domains, but the role of such proteins in pathogenicity is unknown for any Colletotrichum species. We characterized two effectors, ChELP1 and ChELP2, that are transcriptionally activated during the early biotrophic phase of infection. Immunocytochemistry showed ChELP2 is concentrated on the surface of bulbous biotrophic hyphae at the interface with living host cells but is absent from filamentous necrotrophic hyphae. In co-localization experiments with wheatgerm agglutinin, the presence of ChELP2 was correlated with the absence of surface-accessible chitin, and vice versa. Recombinant ChELP1 and ChELP2 bound chitin and chitin oligomers in vitro with high affinity and specificity and both proteins suppress the chitin-triggered activation of two immune-related plant MAP kinases. Using RNAi-mediated gene silencing, we found ChELP1 and ChELP2 are essential for fungal virulence and appressorium-mediated penetration of both Arabidopsis epidermal cells and cellophane membranes in vitro. The data suggest a dual role for these LysM proteins as effectors for suppressing chitin-triggered immunity and as proteins required for appressorium function.