Anatomical and hormonal description of rootlet primordium development along white lupin cluster root

Cécilia Gallardo‡, Bárbara Hufnagel‡, Célia Casset, Carine Alcon, Fanny Garcia, Fanchon Divol, Laurence Marquès, Patrick Doumas and Benjamin Péret*

BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France

Correspondence
*Corresponding author, e-mail: benjamin.peret@cnrs.fr
‡These authors contributed equally to this work.

Cluster root (CR) is one of the most spectacular plant developmental adaptations to hostile environment. It can be found in a few species from a dozen botanical families, including white lupin (Lupinus albus) in the Fabaceae family. These amazing structures are produced in phosphate-deprived conditions and are made of hundreds of short roots also known as rootlets. White lupin is the only crop bearing CRs and is considered as the model species for CR studies. However, little information is available on CRs atypical development, including the molecular events that trigger their formation. To provide insights on CR formation, we performed an anatomical and cellular description of rootlet development in white lupin. Starting with a classic histological approach, we described rootlet primordium development and defined 8 developmental stages from rootlet initiation to their emergence. Due to the major role of hormones in the developmental program of root system, we next focussed on auxin-related mechanisms. We observed the establishment of an auxin maximum through rootlet development in transgenic roots expressing the DR5:GUS auxin reporter. Expression analysis of the main auxin related genes (TIR, ARF, AUX/IAA…) during a detailed time course revealed specific expression associated with the formation of the rootlet primordium. We showed that LaTIR1b [TRANSPORT INHIBITOR RESPONSE 1b] is expressed during rootlet primordium formation and that LaARF5 [AUXIN RESPONSE FACTOR 5] is expressed in the vasculature but absent in the primordium itself. Altogether, our results describe the very early cellular events leading to CR formation and reveal some of the auxin-related mechanisms.
Abbreviations – CR, cluster root; GUS, ß-glucuronidase; LR, lateral root; Pi inorganic phosphate; LaARF5, *Lupinus albus* AUXIN RESPONSE FACTOR 5; LaTIR1b, *Lupinus albus* TRANSPORT INHIBITOR RESPONSE 1b.

Introduction

Cluster roots or proteoid roots are specific organs that are produced by the Proteaceae and a limited number of species belonging to several botanical families that are adapted to habitats with extremely low soil fertility (Shane and Lambers 2005, Lambers et al. 2015). Indeed, cluster roots correspond to peculiar lateral roots producing bottlebrush-like clusters of short rootlets (reviewed in Vance et al. 2003; Fig. 1A, B). These organs represent an evolutionary adaptation to phosphorus-impoverished soils. As a result, cluster roots exhibit four main characteristics regarding their development and physiology (Skene 2000): (i) a massive induction of rootlets (up to 20-100 per cm), (ii) a determinate development leading to a limited growth and subsequent entry into senescence, (iii) an exudative burst resulting in massive secretion of protons, organic acids, phenolics and phosphate remobilizing enzymes and (iv) a high phosphate uptake capacity. The secretion of protons can be imaged with a pH indicator such as bromocresol purple (Fig. 1C). A high level of ferric reductase activity is also associated with cluster root physiology and can be revealed biochemically (Fig. 1D).

White lupin (*Lupinus albus*) is an annual legume traditionally cultivated around the Mediterranean and is also the only cultivated crop that can form cluster roots. It is a model of interest because of its quick life cycle compared to other species, mainly bushes and trees, sharing the ability to form these structures. Moreover, white lupin has the capacity to form nitrogen-fixing nodules as a result of the symbiotic interaction with *Bradyrhizobium sp.* but has lost the ability to form mycorrhizal associations (Lambers and Teste 2013). Interestingly, many cluster root forming species share this lack of ability for mycorrhization. The capacity to form cluster roots in lupin allows a reduction of phosphate fertilizer use in the field and results in a beneficial interaction in mixed cultures (Cu et al. 2005), this represents an interesting example to lower our dependency on this source of agricultural input.

In this study, we used white lupin cluster root as a model to study a highly exacerbated mode of lateral root initiation and development. Indeed, production of numerous rootlets means that several sites of lateral root formation are activated in an almost synchronous manner (Hagström et al. 2001). Regular lateral root development involves several fundamental mechanisms that have been largely described, including in the model plant *Arabidopsis thaliana*. Lateral root formation starts early in the primary
root apex where pre-branching sites are defined (Moreno-Risueno et al. 2010, Xuan et al. 2015). Later on, founder cell specification occurs in the pericycle to trigger the initiation event (Dubrovsky et al. 2008, De Rybel et al. 2010). The lateral root primordium then undergoes a series of divisions following a defined pattern (Malamy and Benfey 1997) and simultaneously emerges through the outer tissues to reach the rhizosphere (Laskowski et al. 2006). This developmental process is thought to be iterative for higher order lateral roots but very few studies have focussed on this subsequent step. In lupin, we can imagine that these fundamental mechanisms are amplified to produce hundreds of rootlets. It is therefore possible to learn more about the regulatory mechanisms of lateral root development by studying lupin cluster root development.

It is well known that several hormones control lateral root formation (Fukaki and Tasaka 2009), among which auxin acts as a positive regulator (Du and Sheres 2017) whereas cytokinins have a negative impact (Laplaze et al. 2007). Auxin transport is polar and achieved by various transporters including PIN [PIN FORMED] efflux and AUX/LAX [AUXIN RESISTANT – LIKE-AUX1] influx carriers (Benková et al. 2003, Billou et al. 2005). Auxin regulates the transcriptional activity of several genes through the action of the SCF^{TIR/AFB} complex, which comprises TIR1 auxin receptor (F-box protein) (Dharmasiri et al. 2005, Kepinski and Leyser 2005) and a SCF (SKP-Cullin F-box) type ubiquitin E3 ligase. Together with the Aux/IAA repressor, they form the auxin receptor complex. In the presence of the ligand, the complex tags Aux/IAA for degradation, therefore releasing the ARF (Auxin Response Factor) proteins. ARF proteins are known to regulate (activate or repress) transcription by binding to specific Auxin Response Elements (AuxRE) in the target gene promoter (Ulmasov et al. 1997, Ulmasov et al. 1999). In fact, the establishment of a meristem is always accompanied by the establishment of an auxin maximum (Benková et al. 2003). Such auxin gradient has not yet been described in white lupin rootlets. Previous studies reported the accumulation of auxin in lupin roots as a response to low phosphate conditions (Meng et al. 2013). Accordingly, exogenous auxin treatments favour the formation of numerous roots but whether they are cluster roots has not been formally demonstrated (Meng et al. 2013). The expression of various auxin-related genes (transport, synthesis) has been reported but no detailed expression patterns have been shown (Wang et al. 2014, Wang et al. 2015). Given the determinate nature of rootlet meristems, the establishment of an auxin gradient may be transitory or not even happen.

In this study, we focussed on rootlet development because it represents an optimal model for lateral root development for two major reasons: (i) rootlets are massively and synchronously induced in phosphate starvation conditions and (ii) rootlets have a determinate development. We achieved a
histological description of rootlet development during cluster root formation in white lupin to describe the early cellular division events. We demonstrated the establishment of an auxin gradient during rootlet primordia formation by studying the *DR5:GUS* marker in white lupin. We set up a time course sampling approach to dissect auxin-related gene expression and focused on two genes. Cloning *LaTIR1b* and *LaARF5* promoters allowed us to determine their expression pattern during rootlet development and to validate an important role of auxin during this process.

Materials and methods

Plant materials and growth conditions

Seeds of white lupin (*Lupinus albus* cultivar Amiga obtained from Florimond-Desprez, France) were used in all experiments. Seeds were germinated on vermiculite substrate for 4 days. Seedlings were cultivated in growth chambers under controlled conditions (16h light / 8h dark, 25°C day / 20°C night, 65% relative humidity, PAR intensity 200 μmol m⁻² s⁻¹). After germination, 4 seedlings were transferred to 1.6-l pots. The hydroponic solution was modified from (Abdolzadeh et al. 2010) without phosphate, according to the following composition: MgSO₄ 54 μM; Ca(NO₃)₂ 400 μM; K₂SO₄ 200 μM; Na-Fe-EDTA 10 μM; H₂BO₃ 2.4 μM; MnSO₄ 0.24 μM; ZnSO₄ 0.1 μM; CuSO₄ 0.018 μM; Na₂MoO₄ 0.03 μM. The nutrient solution was continuously aerated and was renewed every 7 days.

Cluster root physiological assays

For all functional assays, the roots of 3-week-old plants were thoroughly washed in ultra pure water, and carefully pressed on agar sheets to avoid damaging the roots and covered with a transparent film. For visualisation of protons excretion, agar sheets contained: 0.8% agar (w/v), 0.005 % bromocresol purple buffered with Tris HCl 1 mM pH 6, 2 mM K₂SO₄ and 1 mM CaSO₄. For visualisation of ferric reductase activity, agar sheets were prepared as follows: 0.8% agar (w/v), 100 μM Na-Fe-EDTA, 300 μM bathophenanthroline disulfonic acid, 1 mM K₂SO₄. Agar plates were allowed to set at room temperature for 6 h in the dark.

Low coverage genome sequencing

To generate a genomic dataset of white lupin, DNA from leaf tissue was extracted using Qiagen Genomic-tip 100 according to the manufacturer's protocol (Qiagen, Hilden, Germany). The integrity and quality of total DNA was checked using NanoDrop 1000 Spectrophotometer (Thermofisher, Waltham, MA) and formaldehyde agarose gel electrophoresis, and DNA was quantified using a Qubit.
fluorometer (Promega, Madison, WI). Short-reads sequencing (150-bp) was performed using the Illumina Hiseq 3000 platform at GenoToul (Toulouse, France), generating 79,424,562 reads. Quality assessment and trimming of the reads were performed with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html), respectively.

In silico genome walking
In order to identify the promoter sequences of LaTIR1b (LAGI02_15246) and LaARF5 (LAGI02_2355) whose cDNA were obtained from the white lupin gene index (LAGI02) previously published (Secco et al. 2014), we set up a technique that we named in silico genome walking (ISGW). ISGW is achieved in 2 steps: first the Illumina reads are mapped against a cDNA sequence from the gene of interest (reference sequence) using BBmap v. 37.41 (https://sourceforge.net/projects/bbmap/) and second all mapping reads are assembled into a slightly larger contig using CAP3 (Huang and Madan 2009). The process is repeated by using the larger contig as a reference for a next round of assembly, therefore initiating the genome walking process (both ways). ISGW was performed until we obtained contigs containing 1000 bp upstream of the ATG start codon. This sequence information was then used to clone the promoter by PCR amplification.

Molecular cloning
The primers for pLaTIR1b (F-5’-TCATTTCCAAACTTATAAGTGG-3’; R-5’-GGTCTGGTTGATTTCACTGATGAAACG-3’) and pLaARF5 (F-5’-GATCCTTTTAGAGAGTTGG-3’; R-5’-GCAACACCACATCAAATTCGGAAGTTGG-3’) were designed using Primer3Plus (Untergasser et al. 2012). They were used to amplify a total of 986 bp and 898 bp upstream of the start codon of LaTIR1b and LaARF5 respectively, from white lupin genomic DNA with the addition of the attb1 (5’-GGGGCCAAGTTTGTACAAAAAAGCAGGCT-3’) and attb2 (5’-CCCCCCCACCTTTGTACAAAGAAGCTGGGT-3’) adapters. Amplified fragments were subsequently cloned into the pDONR221 by Gateway reaction (Thermoﬁsher, Waltham, MA). The promoters were then cloned into the binary plasmid pKGW-FS7 (Karimi et al. 2002) containing a GFP-GUS fusion by Gateway cloning.

Bacterial strain
Agrobacterium rhizogenes strain ARquaI was used to perform “hairy root” transformation of white lupin. Bacteria were transformed with the binary plasmid by electroporation and confirmed by PCR and sequencing. LB agar plates (agar 0.8%) added with acetosyringone 100 μM were inoculated with 200 μl of liquid bacteria culture and incubated at 28°C for 24 h to get a bacterial lawn. Bacterial lawn was used for white lupin seedling transformation.

Hairy root transformation of white lupin

White lupin seedlings were transformed following protocol previously described (Uhde-Stone et al. 2005). White lupin seeds were surface sterilised by 4 washes in osmosed water, 30 min sterilization in bleach (Halonet 20%, Proquimia, Barcelona, Spain) and washed 6 times in sterile water. Seeds were germinated in the dark in water. After germination, radicles of 1 cm were cut over 0.5 cm with a sterile scalpel. The radicles were inoculated with the A. rhizogenes culture. Fifteen inoculated seedlings were placed on square agar plates (0.7% agar in 1X Hoagland solution) containing 15 μg ml⁻¹ kanamycin. Plates were placed vertically in growth chambers (Fitostron, Weiss Technik, Eragny, France) in controlled conditions: 18 h light / 6 h dark, at 25°C, 60% relative humidity with a PAR intensity of about 130 μmol m⁻² s⁻¹. Seedlings were transferred to fresh plates every 7 days for 3 weeks after germination. Timentin (150 μg ml⁻¹) was added to the agar medium after 1 week on plates to limit bacterial growth. Plants growing “hairy roots” were transferred after 3 weeks in 1.6-l pot containing nutrient solution with 15 μg ml⁻¹ timentin. Nutrient medium was renewed each week. After 7 days in hydroponic conditions, CRs were sampled on “hairy root” plants. Each root represents an independent transformation event and we observed n=89 roots from DR5:GUS plants, n=47 roots from pTIR1b:GUS plants and n=26 roots from pARF5:GUS plants.

Histochemical analysis

Histochemical staining of β-glucuronidase was performed on CRs from “hairy root” plants. Samples were incubated in a phosphate buffer containing 1 mg ml⁻¹ X-Gluc as a substrate (X-Gluc 0.1%; phosphate buffer 50 mM, pH 7, potassium ferricyanide 2 mM, potassium ferrocyanide 2 mM, Triton X-100 0.05%). Coloration was performed as follows: 2 h incubations for pDR5:GUS, 30 min incubation for pLaTIR1b:GFP-GUS, or 2.5 h for pLaARF5:GFP-GUS. Tissues were fixed in a 2% formaldehyde / 1% glutaraldehyde / 1% caffeine solution in a phosphate buffer at pH 7. Tissues were fixed for 2.5 h under shaking at room temperature and then 1.5 hours at 4°C.
Microscopic analysis

For thin section, roots were dehydrated in successive ethanol solutions with increased concentrations: 50% (30 min), 70% (30 min), 90% (1 h), 95% (1 h), 100% (1 h), 100% (overnight). Samples were impregnated with 50% pure ethanol and 50% resin (v/v), then in 100% resin. CRs were embedded in Technovit 7100 resin (Heraeus Kulze, Wehrheim, Germany) according to the manufacturer’s recommendations. For thick sections of 80 μm, cluster roots were embedded in agarose 4% (m/v) and cut with a vibratome (Micorcut H1200, Biorad, Hercules, CA). The whole mount root tissues were cleared with 0.1% ClearSee (Kurihara et al. 2015) in PBS 1X solution and mounted on slides in water. Thin sections of 6 μm were produced using a microtome (RM2165, Leica Microsystems, Wetzlar, Germany). They were counterstained for 5 min either with 0.05% toluidine blue or with 0.1% ruthenium red in a phosphate buffer (pH 7.4). All sections were observed with a colour camera on Olympus BX61 epifluorescence microscope (Tokyo, Japan) with Camera ProgRes®C5 Jenoptik and controlled by ProgRes Capture software (Jenoptik, Iena, Germany).

Expression analysis

A total of 8 CRs coming from 4 independently grown plants were sampled 7 days after germination every 12 h. Total RNA from these samples was extracted using the Direct-zol RNA MiniPrep kit (Zymo Research, Irvine, CA) according to the manufacturer’s recommendations. RNA concentration was measured on a NanoDrop (ND1000) spectrophotometer. Poly(dT) cDNA were prepared from 1.5 μg total RNA using the revertaid First Strand cDNA Synthesis (Thermofisher, Waltham, MA). Gene expression was measured by qRT-PCR (LightCycler 480, Roche Diagnostics, Basel, Switzerland) using the SYBR Premix Ex Taq (Tli RNaseH, Takara, Clontech, Mountain View, CA) in 384-well plates (Dutscher, Brumath, France). Target quantifications were performed with specific primer pairs designed using Universal Probe Library software (Roche Diagnostics, Basel, Switzerland). The two primer pairs used in the parallel PCR reaction were: LaTIR1b F-5’-AACCTACTACGTTGGTGCTCCTCA-3’ and LaTIR1b R-5’-CTCTGTCGAGCAGACTCCTGT-3’; LaARF5 F-5’-GACGATGAAAATGACATGATGC-3’ and LaARF5 R-5’-AATAATACAGAATTCCGGCCATC-3’. Expression level was normalised to LaUBQ (LaUBQ). The primer pairs used were LaUBQ F-5’-ATGTCAAGCAGGCAAGATCCAAG-3’ and R-5’-GAACCTTCCCAGAATCATCAA-3’ (Meng et al. 2012). All qRT-PCR experiments were performed in technical quadruplicates and the values presented represent means ± SD. Relative gene expression
levels were calculated according to the Ct method (Livak and Schmittgen 2001). All experiments were performed as 4 biological replicates.

Results

Characterisation of rootlet primordium development in white lupin

If the cellular events leading to the formation of lateral roots have been well described (Malamy and Benfey 1997, Casimiro et al. 2003, Péret et al. 2009, Von Wangenheim et al. 2016), especially in the model plant A. thaliana, little information is available about the contribution of root tissues to cluster root development, especially in white lupin. To describe cluster root development, our aim was first to provide a tissular description of rootlet primordia development. To achieve this objective, we generated thin cross sections of 14-day-old cluster roots that were subsequently stained with toluidine blue to reveal the cell layers. Lupin roots comprise only one layer of pericycle, endodermis and epidermis as well as 5-6 layers of cortical cells (Fig. 2A and B). Observation of these thin sections by photonic microscopy allowed the observation of the early cellular events throughout the course of rootlet development. By analogy with lateral root development in the model plant Arabidopsis, we defined eight developmental stages from initiation (stage I) to emergence (stage VIII), as shown in Fig. 2 and described below.

On the cross sections, the earliest visible event of rootlet formation corresponded to a periclinal division in the pericycle close to a protoxylem pole (Stage Ia, Fig. 2C, black arrow). This division was followed by a second periclinal division in the pericycle cells (Stage Ib, Fig. 2D, black arrows). At stage II, it seemed that pericycle cells continued to divide periclinally as more cell walls were observed in these cells. These divisions gave birth to two pericycle layers: P1 and P2. Approximately at the same moment, periclinal divisions were also observed in the endodermis tissue, overlaying the pericycle cells (Stage II, Fig. 2E, black arrow). As a consequence, we observed a rootlet primordium with 4 layers (P1, P2, E1, E2), that was about 10 cells in length (Stage II, Fig. 2E). A first radial division was also seen in the pericycle at the lateral primordium boundary (Stage II, Fig. 2E, purple arrow). The following stage was characterized by further periclinal divisions in the pericycle and endodermis tissues (Stage III, Fig. 2F, purple arrows). Cell divisions in the next following stages became more and more difficult to characterize as the primordium was increasing both in length and width. Numerous cells continued to divide, giving progressively birth to a typical dome shaped primordium. At stage IV, rootlet primordium development coincided with intensive cell divisions happening between the xylem pole and the P1 pericycle tissue in the procambial tissue (Stage IV, Fig.
A radial division was seen in the overlaying cortical tissue, suggesting a possible role of cortex tissue in rootlet primordium development (Stage IV, Fig. 2G, purple arrow). Stage V of rootlet primordium development coincided with further divisions in the procambial tissue and at the apex of rootlet primordium (Stage V, Fig. 2H, black arrow). Lens shaped cells also appeared at the edges of rootlet primordium (Stage V, Fig. 2H, purple arrows). In the next stage of rootlet development, stage VI, rootlet primordium had crossed half of the main cluster root and was much larger. This progression through the outer tissues caused the surrounding cortical cells to be distorted and displaced (Stage VI, Fig. 2I). At this stage, elongated cells could be observed in the centre of the rootlet primordium, reminiscent of vascular elements (Stage VI, Fig. 2I, black arrows). A core of cells at the apex gave rise to a croissant shaped structure that looks like a typical root cap at the tip of the rootlet primordium (Stage VI, Fig. 2I). From this stage onward, new cell divisions were really difficult to characterize due to the high number of cells and their small volume. At stage VII, the primordium was crossing the last layers of cortical cells of the main cluster root and was about to emerge in the surrounding rhizosphere. At this stage, an important number of elongated cells were visible in the centre of the rootlet primordium and seemingly connected to the vasculature of the main cluster root (Stage VII, Fig. 2I, black arrow). Primordia grew from 70 μm in width and 115 μm in length at stage IV (Fig. 2G) to 180 μm in width and 220 μm in length at stage VIII (Fig. 2K). When the rootlet was about to emerge, the primordium was more than 4 times longer than Arabidopsis lateral root (LR) primordium, which is typically about 50 μm in length. In the last step, stage VIII, the new formed rootlet was crossing the epidermis and emerging (Stage VIII, Fig. 2K).

Establishment of an auxin gradient during rootlet morphogenesis

The major role of auxin during LR development has been described into great detail (Lavenus et al. 2013), notably with the help of the synthetic auxin reporter DR5 (Ulmasov et al. 1997). We generated white lupin composite transgenic “hairy root” plants expressing the DR5 reporter fused to the β-glucuronidase gene. Our first goal was to determine whether the “hairy root” system is suitable to observe auxin related developmental mechanisms and subsequently to determine whether an auxin gradient is established during rootlet organogenesis. In white lupin, the DR5 marker, an artificial promoter made of 7 tandem repeats of an auxin responsive element isolated from soybean (Glycine max), showed a strong conserved pattern compared to other species. Indeed, DR5 expression was seen in the cluster root tip and vasculature (Fig. 3A and S1A). In rootlet primordium, GUS activity was observed at stage I of development (Fig. 3B), in one of the first dividing cells, close to the protoxylem
pole. At stage IV, when divisions give rise to a dome shaped primordium, GUS activity was observed in a few cells at its tip (Fig. 3C). From this stage onward, a strong DR5 response builds up in the primordium apex (Fig. 3C-E, G-I). After emergence, strong GUS activity was detected in the root cap whereas the zone above the rootlet tip was displaying a weak GUS activity (Fig. S1B-D). Expression in the vasculature was observed in mature rootlets (Fig. S1C, D). Our observations of the DR5:GUS reporter suggest that an auxin gradient is established during rootlet initiation up to their emergence and maintained during their later development.

Time course analysis of key auxin signalling genes during rootlet development

In order to identify key auxin signalling genes potentially involved in rootlet development, we performed in silico analysis of the available transcriptomic data in white lupin (Secco et al. 2014). In that study, transcriptomic data were produced from 3 parts of cluster roots (tip of cluster root, physiologically immature cluster root and mature cluster root) as well as 2 parts of regular lateral roots (tip of the lateral root and mature lateral root). We identified several auxin related genes in this dataset encompassing ARFs, Aux/IAAs, TIRs, PINs, AUX-LAXs and we shortlisted 8 genes (Table S1) that showed consistent results with BLAST (i.e. for which the cDNA sequence matched the expected orthologous sequences from other species and showed a similar overall gene structure) and for which we managed to amplify fragments by qPCR.

The available transcriptomic dataset (Secco et al. 2014) study represents an important tool for cDNA discovery but we wanted to study gene expression level with a higher resolution than the existing data. Therefore, we developed a sampling method to describe rootlet development along a time course. Our analysis of white lupin root system allowed us to locate the first cluster of rootlets on the cluster root and perform a temporal sampling covering the different phases of rootlet emergence. We measured the distance to primary root that we defined as the distance between the primary root and the first cluster of rootlets (Fig. S2A). We sampled 1 cm of cluster root at a distance of 1 cm from the primary root from 7 days after germination every 12 h for 5 days, therefore we were able to cover the entire rootlet developmental process. Indeed, 55% of cluster roots initiate at 1 or 1.5 cm from the primary root and the sampled zone therefore comprises 77% of the produced rootlets (Fig. S3B). Samples were collected for total RNA extraction and subsequent qRT-PCR analysis (Fig. 4A-B) and imaging (Fig. 4C). We observed that rootlet initiation occurred at 12h after the first sampling (has) and that rootlet emergence occurred at 72 has (Fig. 4C).
Expression analysis of the 8 auxin-related genes showed various overall behaviours during rootlet development (Fig. 4 and Fig. S3). Some genes did not show a clear induction or repression response but varied along the time course such as LaTIR1a and LaARF14b. Others showed a general repression such as LaARF5, LaIAA28 and LaARF14a (although for this gene one biological replicate strongly differs from the other 3). Two genes showed a peak of induction at around 72 h, such as LaPIN1 or LaLAX3, but not all biological replicates showed matching patterns. Interestingly, LaTIR1b showed a general induction during the time course. We decided to focus our attention on two genes: LaTIR1b and LaARF5 as shown in Fig. 4A and Fig. 4B. TIR1 codes for a protein that is part of the SCF/TIR complex, which promotes Aux/IAA protein degradation when auxin is present; and ARF5 is known to play a role in the very early stages of LR development ensuring the identity of the founder cells (De Smet et al. 2010). Interestingly, LaTIR1b is slightly induced during our time course with a peak of expression at 72 h (Fig. 4A). This coincides with the emergence stage. On the opposite, LaARF5 is repressed during rootlet formation (Fig. 4B), which may suggest a negative control by auxin accumulation in the rootlet primordium.

LaTIR1b and LaARF5 expressions are altered during rootlet development

We aligned the cDNA-deduced protein sequence of LaTIR1b and LaARF5 with their orthologous genes from *A. thaliana* and generated phylogenetic trees (Fig. 5A and Fig. S4). LaTIR1b appeared to be the closest ortholog of AtTIR1 with 77% identity at the entire protein level, suggesting that the automatic annotation was fairly accurate (Fig. 5A). However, LaARF5 groups in a branch that contains 3 close orthologs: AtARF11, AtARF18 and AtARF9. LaARF5 highest identity level is with AtARF11 at 70% whereas its shares only 50% identity with AtARF5 suggesting that this gene annotation is not very accurate (Fig. S4). Furthermore, LaARF5 is predicted to act as a repressor like AtARF11 and not as an activator like AtARF5.

To characterize the expression pattern of these two genes, we used an in silico genome walking approach to identify the promoter regions of LaTIR1b and LaARF5 (see Materials and methods). These promoters were amplified from genomic DNA and subsequently cloned and sequenced to validate their nucleotide sequence. We then analysed the promoter region of the two genes using the SOGO database (Higo et al. 1999), which revealed numerous potential binding sites for various transcription factors amongst which some are hormone related (Table S2) and thus potentially important in the context of rootlet development. The position of these binding sites in the promoter of each gene is indicated in Fig. 5B and Fig. 6A. The promoters of LaTIR1b (Fig. 5B) and LaARF5 (Fig.
6A) contain a canonical auxin responsive element (AuxRE) that is known to be a target site for ARF transcription factors. They also contain several ARR sites (Arabidopsis Response Regulator) that are present in the promoter of cytokinin-induced genes (3 for LaTIR1b and 4 for LaARF5). The promoter of LaARF5 contains a gibberellin-related binding site and 2 sites found in SAUR genes (Small Auxin Up-Regulated RNA), these sites were not found in the promoter of LaTIR1b.

In order to further characterize the expression pattern governed by these promoters, we fused them to the β-glucuronidase coding region to create pLaTIR1b:GUS and pLaARF5:GUS expression vectors. These vectors were transfected into Agrobacterium rhizogenes and used to genetically transform white lupin plants by “hairy root” (Uhde-Stone et al. 2005). We examined pLaTIR1b:GUS expression during the development of rootlets. In developing primordia, pLaTIR1b was first expressed at stage III (Fig. 5C) and a slight expression gradient was visible at the apex primordia in the following developmental stages (Fig. 5D-F). In the rootlet, a very strong gradient of expression was observed in young and middle-aged rootlets (Fig. 5G-J) and a maximum of expression remained in the rootlet tip, corresponding to the meristem and elongation zone (Fig. 51-J). In the rootlet, LaTIR1b was expressed in the vasculature throughout their lifetime and expression at the rootlet tip faded away in older rootlets (Fig. 5K).

We also examined pLaARF5:GUS expression during rootlet development. Our analysis revealed that pLaARF5 is expressed in the cluster root vasculature but its expression is absent from the rootlet primordium. No GUS coloration was found from early stage up to after emergence (Fig. 6B-E). Furthermore, pLaARF5:GUS expression in the surrounding tissues weakened during the growth of the rootlet primordium (Fig. 6F-G), which is consistent with the global repression of LaARF5 found in our qRT-PCR analysis (Fig. 4B). At later rootlet development, expression in the vasculature could be detected, mimicking the expression profile in the cluster root (Fig. 6J).

Discussion

Previous work on white lupin cluster root has been largely focussed on its physiology because it is a very active organ with high levels of exudation involved in the root phosphate acquisition (Neumann 2000, Massonneau et al. 2001, Yan et al. 2002, Hocking and Jeffery 2004). In this study, we decided to focus on cluster root because of its atypical mode of development, corresponding to the production of numerous rootlets initiated in a synchronous manner and with a limited lifetime. Our approach has revealed that the early divisions of rootlets are very similar to what is observed in other species lateral root development, like the model plant Arabidopsis or even in legumes. Indeed, lateral root
development in these species is initiated by divisions in the pericycle cells in front of the xylem poles (Dubrovsky et al. 2000), and this is the case for white lupin rootlets (Fig. 2). Cellular division in the endodermis and cortex are regularly observed in legume species – like Medicago truncatula (Herrbach et al. 2014) – but not in Arabidopsis, this may be linked with the presence of numerous cortical cell layers and with the comparatively important size of the primordia. We provide here a detailed anatomical description of the various stages of rootlet development along the cluster root that will prove useful in the future to characterize mutants or genetically altered plants but also to deepen the study of the molecular mechanisms regulating cluster root development.

In parallel, we have set up an original sampling procedure that covers the entire development process, from the rootlet initiation to the rootlet senescence, and this system allows for the description of gene expression profiling during rootlet development, even if some discrepancies are observed probably due to plant to plant genetic variability. We focussed here on describing some auxin-related gene expressions and we identified two genes with contrasted expression profiles (Fig. 4). Further analysis of their expression pattern at the tissular level confirmed the induction and repression of LaTIR1b and LaARF5, respectively (Fig. 5 and 6), and validated our time course sampling method. LaARF5 was previously annotated based on RNAseq assembly in the absence of a reference genome for white lupin (Secco et al. 2014). However, phylogeny analysis revealed that it is the closest ortholog to AtARF11.

In accordance, LaARF5 and AtARF11 are both predicted to be repressor ARFs whereas AtARF5 is an activator. Furthermore, AtARF5/MONOPTEROS is expressed in lateral root primordium from as early as stage I and up to emergence (de Smet et al. 2010, Ckurshumova et al. 2014) whereas LaARF5 is not expressed in cluster root primordia (Fig. 6). Further work will be needed to understand how these two genes are regulated, including by hormonal signals, and how they fit in larger gene regulatory networks. Whole-genome transcriptional studies are an essential step to finely identify new genes regulating lateral root development and the cluster root model seems to be perfectly adapted to this strategy.

Another key feature of rootlet development is that they all enter into senescence simultaneously. In fact, rootlet meristems are determinate, meaning that they stop dividing and undergo full differentiation up to their tip (Watt and Evans 1999). This mode of growth is directly related to the function of the cluster root and to the chemical nature of phosphate. Indeed, inorganic phosphate is poorly mobile in the soil, therefore cluster roots are able to remobilize as much phosphate as possible and subsequently uptake it for the plant nutrition (Hinsinger et al. 2011). However, soil phosphate patches are quickly used up and new clusters are produced in a distant site to forage for more
phosphate. As a result, cluster roots are ephemeral structures by nature due to rootlets determinacy. In laboratory conditions (hydroponic culture medium), we expose roots systems to a permanent and homogeneous lack of phosphate. In these conditions, rootlets are produced, grow to their mature length and then stop growing demonstrating that there is no need for a feedback from the medium to control their growth behaviour. This raises several important questions regarding the order of events leading to rootlet growth arrest: when does cell elongation and division stop? Is the determinacy of the meristem already established in the rootlet primordium? Does the primordium ever acquire a meristematic organisation? Does a maximum of auxin form in the rootlet meristem? Here, the use of the DR5 marker allowed us to confirm the establishment of such a maximum of auxin that seems to be maintained throughout the course of rootlet development up to its mature length (Fig. 3 and S1). More work will be needed to describe precisely how rootlet determinacy is genetically controlled and if a mechanism similar to what is known about Arabidopsis primary root development can be described (Balzergue et al. 2017). In this regard, studying the establishment of a quiescent centre and its maintenance during rootlet growth could be of great interest.

With regards to root developmental adaptations, white lupin is a fantastic model to parallel with other models like Arabidopsis or M. truncatula for a better understanding of the mechanisms regulating the development of lateral roots but many genomic tools are still missing to conduct further analysis. We believe that future work will produce these tools and help understand how cluster root development is tightly controlled to produce such amazing structures.

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Starting Grant Lupin Roots - grant agreement No 637420 to B.P.). C.G. is the recipient of a fellowship from GAIA doctoral school of Montpellier University. We acknowledge the help of the imaging facility MRI, member of the national infrastructure France-BioImaging supported by the French National Research Agency (ANR-10-INBS-04, «Investments for the future »).

References

Dubrovsky JG, Sauer M, Napsucially-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J,

Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA Proteins Repress Expression of...
Reported Genes Containing Natural and Highly Active Synthetic Auxin Response Elements.

Plant J 19: 309–319

new capabilities and interfaces. Nucleic Acids Res 40: 1–12

Rules and self-organizing properties of post-embryonic plant organ cell division patterns. Curr
Biol 26: 439–449

of cluster-root function and development in phosphate-deficient white lupin (Lupinus albus)
identified by transcriptome sequencing. Physiol Plant 151: 323–38

during cluster-root development in phosphate-deficient white lupin (Lupinus albus L.). J Plant
Physiol 177: 74–82

Proteoid Roots of White Lupin Grown with Low Phosphorus and Ambient or Elevated

Xuan W, Audenaert D, Parizot B, Möller BK, Njo MF, De Rybel B, De Rop G, Van Isterdael G,
Mähönen AP, Vanneste S, Beeckman T (2015) Root cap-derived auxin pre-patterns the

ATPase Activity in Proteoid Roots of White Lupin under Phosphate Deficiency 1. Plant Physiol
129: 50–63

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Fig. S1. DR5::GUS expression pattern in white lupin cluster root.
Fig. S2. Distance to primary root of the first cluster of rootlets is a robust trait.
Fig. S3. Relative level of expression of 6 auxin-related genes during cluster root development.
Fig. S4. Neighbour joining tree showing relationship of LaARF5 with auxin response factors from Arabidopsis thaliana.

Table S1. Shortlist of auxin-related genes identified in white lupin.
Table S2. List of hormone-related cis-acting elements identified in LaTIR1b and LaARF5 promoters.

Supplementary Data 01. Full genomic sequence of LaTIR1b with UTR and exon/intron annotation.
Supplementary Data 02. Full genomic sequence of LaARF5 with UTR and exon/intron annotation.

Figure legends

Fig. 1. White lupin architecture and physiology in low phosphate conditions. (A-B) Root architecture of a 21-day-old white lupin (Lupinus albus) comprising many cluster roots in the upper part of the root system (asterisks). Cluster roots are secondary roots producing hundreds of short roots with determinate development, known as rootlets (B). (C-D) Physiological assays of 19-day-old lupin root systems placed on agar plates containing bromocresol purple (BCP) (C) or bathophenanthroline disulfonic acid disodium salt (BPDS) in the presence of Na-Fe EDTA (D). (C) BCP is a purple pH indicator that turns yellow when the roots are acidifying the medium with proton excretion (pH<5). (D) BPDS allows visualisation of ferric reductase activity upon reduction of Fe$^{3+}$ to Fe$^{2+}$, with appearance of a pink coloration. Scale bars are 2.5 cm (A, C, D) and 0.5 cm (B).

Fig. 2. Rootlet primordium development during cluster root formation in white lupin. Radial cellular organisation of white lupin cluster root (A) drawn from a thin cross section of cluster root from 24-day-old P-deficient plants (B). Xylem vessel elements are stained in blue and non-lignified cells walls are stained in purple by toluidine blue. (C) A first periclinal division is seen in the pericycle at stage Ia. (D) A second cell is dividing in the pericycle (stage Ib). (E) Periclinal divisions are occurring in the endodermis (stage II). (F) Numerous anticlinal divisions are seen in the pericycle and endodermis tissues (stage III). (G) More cell divisions in the pericycle and endodermis give rise to a dome-shaped rootlet primordium that is about to cross cortex and several cells are dividing at the base of the primordium between the pericycle and protoxylem pole (stage IV). (H) Cells are proliferating at the base and the apex of the primordium (stage V). (I) Primordium has crossed half of the cortex and some
elongated cells are appearing in the centre of the primordium (stage VI). (J) The rootlet primordium is made of numerous cells and is about to reach the epidermis of the secondary root. Note the deformation of the cortex occurring when rootlet is about to emerge (stage VII). (K) The new primordium is crossing the epidermal layer and reaching the rhizosphere (stage VIII). p, pericycle; e, endodermis; c, cortex; xv, xylem vessels. Scale bars are 50 μm.

Fig. 3. Establishment of an auxin gradient during cluster root and rootlet development. (A-I) *DR5:GUS* pattern of expression in lupin “hairy root” seedlings grown on low-phosphate medium. (A) Fully mature whole cluster root. (B-E) *DR5:GUS* expression was observed on thick longitudinal sections (80 μm) at stage I (B), stage IV (C), stage VI (D) and stage VII (E). (F-I) *DR5:GUS* expression was also observed on thin cross sections (6 μm) in the juvenile region of the cluster root counterstained with ruthenium red at corresponding stages: stage I (F), stage IV (G), stage VI (H) and stage VII (I). p, pericycle; e, endodermis; c, cortex; xv, xylem vessels. Scale bars are 100 μm.

Fig. 4. Relative expression levels of *LaTIR1b* and *LaARF5* during rootlet development. Expression levels of *LaTIR1b* (A) and *LaARF5* (B) are relative to the first time point (0 h) and normalized to *LaUBQ*. Data are mean ± SD of 8 cluster roots coming from 4 lupin plants (n=8) with 4 technical replicates each. Four biological replicates are shown in different colours. (C) 1 cm cluster root samples collected 1 cm away from the primary root every 12 h were used to assess transcript level during cluster root development. Scale bar is 0.25 cm.

Fig. 5. Genetic study and expression pattern of *LaTIR1b*, a lupin orthologue of Arabidopsis *TIR1*. (A) Neighbour joining tree showing relationship of *LaTIR1b* with *AtTIR/AFB* from *Arabidopsis thaliana*. *LaTIR1b* gene structure seems to be closely related to *AtTIR1*. The bootstrap consensus tree was inferred from 500 replicates. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates were collapsed. (B) Gene structure of *LaTIR1b*. Hormone-related cis-acting regulatory elements, exons, introns and position of 5’UTR and 3’UTR are shown (graph to scale). (C-K) Expression pattern of *pLaTIR1b:GUS* in 4-week-old plants grown in low phosphate conditions. GUS activity was found in developing primordia of rootlets at stage III (C), stage VI (D), stage VII (E), stage VIII (F) and appeared homogeneous along the cluster at early (G) and late stages (H) of rootlet formation. Later on, expression showed a clear gradient with stronger activity at the rootlet tip.
at 3 stages of rootlet development: young rootlets (I), middle-aged rootlets (J) and old rootlets (K). Scale bars are 100 μm (C-F) and 0.5 mm (G-K).

Fig. 6. Genetic study and expression pattern of *LaARF5*, a lupin ortholog of *Arabidopsis thaliana* *ARF11*. (A) Gene structure of *LaARF5*. Hormone-related *cis*-acting regulatory elements (as defined in Table S2), exons, introns and position of 5’UTR and 3’UTR are shown (graph to scale). (B-J) Expression pattern of *pLaARF5:GUS* in 4-week-old plants grown in low phosphate conditions. GUS activity was absent in developing primordia of rootlets at stage III (B), stage V (C), stage VI (D), stage VIII (E) and remained in the cluster root vasculature (F), absent from early (G) and late stages of rootlet emergence (H) and mature rootlet (I). Expression resumed in the vasculature in old rootlets (J). Scale bars are 100 μm (B-E) and 200 μm (F-J).
Fig. S1. **DR5:GUS expression pattern in white lupin cluster root.** Histochemical localization of GUS activity in transgenic cluster roots directed by synthetic auxin responsive DR5 promoter. **DR5:GUS** activity was observed in cluster root (A) and rootlet during (B) and after emergence (C,D). GUS activity was seen in P-deficient cluster roots at different stages of development. Newly forming primordia of rootlets show strong GUS activity (asterisks) (A). During later stages of rootlet development, blue stain decreased and remained in the rootlet tip and is visible in the stele (C). In old rootlets exhibiting many root hairs, GUS activity was found in the rootlet tip and appear in the stele (D). Scale bars are 1 mm (A,C,D) and 0.5 mm (B).
Fig. S2. Distance to primary root of the first cluster of rootlets is a robust trait. (A) Root system architecture of a 15-days-old white lupin grown in hydroponics showing the distance to primary root (DPR). (B) Number of cluster root in each class of DPR. Scale bar is 2.5 cm.
Fig. S3. Relative level of expression of 6 auxin-related genes during cluster root development. Expression levels are relative to the first time point (0h) and normalized to LaUbiquitin. Data are mean ± standard deviation of 8 cluster roots coming from 4 lupin plants (n=8) with 4 technical replicates each. Data presented for each plot are 4 biological replicates in different colours. Gene identifiers are given in Table S1.
Fig. S4. Neighbour joining tree showing relationship of LaARF5 with auxin response factors from Arabidopsis thaliana. Neighbour joining tree showing relationship of LaARF5 with the 24 ARF proteins from A. thaliana. The bootstrap consensus tree was inferred from 500 replicates. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates were collapsed. LaARF5 protein is branching with 3 close orthologs from A. thaliana (AtARF9, AtARF11, AtARF18).
<table>
<thead>
<tr>
<th>Gene</th>
<th>Seq id Secco</th>
<th>Expression Secco et al. 2014</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Expression FPKM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR</td>
<td>MR</td>
</tr>
<tr>
<td>LaTIR1a</td>
<td>LAGI02 23711</td>
<td>7.36</td>
<td>4.17</td>
</tr>
<tr>
<td>LaTIR1b</td>
<td>LAGI02 15246</td>
<td>15.73</td>
<td>8.42</td>
</tr>
<tr>
<td>LaARF14a</td>
<td>LAGI02 22919</td>
<td>41.47</td>
<td>65.89</td>
</tr>
<tr>
<td>LaARF14b</td>
<td>LAGI02 24689</td>
<td>23.56</td>
<td>31.98</td>
</tr>
<tr>
<td>LaARF5</td>
<td>LAGI02 2355</td>
<td>4.80</td>
<td>7.59</td>
</tr>
<tr>
<td>LaPIN1</td>
<td>LAGI02 14116</td>
<td>7.86</td>
<td>3.48</td>
</tr>
<tr>
<td>LaIAA28</td>
<td>LAGI02 13906</td>
<td>123.85</td>
<td>36.69</td>
</tr>
<tr>
<td>LaLAX3</td>
<td>LAGI02 15524</td>
<td>15.73</td>
<td>3.24</td>
</tr>
</tbody>
</table>

Table S1. Shortlist of auxin-related genes identified in white lupin. LaTIR1 a/b, *Lupinus albus* transport inhibitor response A/B; LaARF5/14a/14b, *Lupinus albus* auxin responsive factor 5/14a/14b; LaPIN1, *Lupinus albus* PIN-FORMED gene 1; LaIAA28, *Lupinus albus* auxin-responsive gene 28; LaLAX3, *Lupinus albus* Like AUX1 3. For each auxin-related gene identified in the Secco et al. (2014) database, is presented the identifier name of the cDNA, the mRNA level of transcripts (expression FPKM) in the different part of the lateral root (TR: tip of the root; MR: mature root) and in the different part of a cluster root from young to old (TCR: tip of the cluster root; ICR: immature cluster root; MCR: mature cluster root). Ratio of transcripts level between tip of the cluster root and mature cluster root, as well as ratio of transcripts level between tip of the cluster root and immature cluster root are also indicated.
Table S2. List of hormone-related cis-acting elements identified in *LaTIR1b* and *LaARF5* promoters. The region 1000bp upstream the start codon was analysed *in silico* using the SOGO online tool (https://sogo.dna.affrc.go.jp/cgi-bin/sogo.cgi?sid=&lang=en&p=640&action=page&page=newplace). Only the hormone-related elements were listed: site name, organism of origin, position from the beginning of the promoter sequence (5'), element sequence and functional annotation of the site.

Table S2

A

<table>
<thead>
<tr>
<th>Site name</th>
<th>Organism</th>
<th>Position</th>
<th>Sequence</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuxRE</td>
<td>Arabidopsis thaliana /</td>
<td>135</td>
<td>TGTCTC</td>
<td>ARF binding site</td>
</tr>
<tr>
<td></td>
<td>Glycine max / *Oryza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sativa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARR1AT</td>
<td>Arabidopsis thaliana</td>
<td>63</td>
<td>NGATT</td>
<td>ARR1 binding element</td>
</tr>
<tr>
<td></td>
<td>478</td>
<td>NGATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>533</td>
<td>NGATT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Site name</th>
<th>Organism</th>
<th>Position</th>
<th>Sequence</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuxRE</td>
<td>Arabidopsis thaliana /</td>
<td>42</td>
<td>TGTCTC</td>
<td>ARF binding site</td>
</tr>
<tr>
<td></td>
<td>Glycine max / *Oryza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sativa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CATATG site</td>
<td>Glycine max</td>
<td>176</td>
<td>CATATG</td>
<td>Found in NDE element in SAUR gene; involved in auxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>262</td>
<td>CATATG</td>
<td>responsiveness</td>
</tr>
<tr>
<td>ARR1AT</td>
<td>Arabidopsis thaliana</td>
<td>18</td>
<td>NGATT</td>
<td>ARR1 binding element</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>NGATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>NGATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>839</td>
<td>NGATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrimidin-Box</td>
<td>Oryza sativa / Hordeum</td>
<td>4</td>
<td>CCTTTT</td>
<td>Related to gibberellin responsive gene</td>
</tr>
<tr>
<td></td>
<td>vulgare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TATCCAC-Box</td>
<td>Hordeum vulgare</td>
<td>849</td>
<td>ATCCAC</td>
<td>Part of conserved cis acting response complex (GARC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>necessary for full gibberellin response</td>
</tr>
</tbody>
</table>