BMCP1, a Novel Mitochondrial Carrier with High Expression in the Central Nervous System of Humans and Rodents, and Respiration Uncoupling Activity in Recombinant Yeast

(Received for publication, August 25, 1998, and in revised form, October 2, 1998)

Daniel Sanchis‡,§, Christophe Fleury‡, Nathalie Chomikit, Marc Goubern, Quinling Huang**, Maria Neverova, Francine Grégoire, Juliet Easlick, Serge Raimbault, Corinne Lévi-Meyrueis, Bruno Miroux, Sheila Collins, Michael Seldin, Denis Richard**, Craig Warden, Frédéric Bouillaud, and Daniel Ricquier**

From the ‡Centre National de la Recherche Scientifique, Centre de Recherche sur l’Endocrinologie Moléculaire et le Développement, 9 rue Jules Hetzel 92190 Meudon, France, the §Rowe Genetics and Pediatrics, University of California, Davis, California 95616, the ¶Ecole Practique des Hautes Études/Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas, France, the **Département de Physiologie, Faculté de Médecine, Université Laval, Québec G1K 7P4, Canada, and the §§Psychiatry and Behavioral Sciences, and Pharmacology, Duke University Medical Center, Durham, North Carolina 27710

We report here the cloning and functional analysis of a novel homologue of the mitochondrial carriers predominantly expressed in the central nervous system and referred to as BMCP1 (brain mitochondrial carrier protein-1). The predicted amino acid sequence of this novel mitochondrial carrier indicates a level of identity of 39, 31, or 30%, toward the mitochondrial oxoglutarate carrier, phosphate carrier, or adenine nucleotide translocator, respectively, and a level of identity of 34, 38, or 39% with the mitochondrial uncoupling proteins UCP1, UCP2, or UCP3, respectively. Northern analysis of mouse, rat, or human tissues demonstrated that mRNA of this novel gene is mainly expressed in brain, although it is 10–30-fold less expressed in other tissues. In situ hybridization analysis of brain showed it is particularly abundant in cortex, hippocampus, thalamus, amygdala, and hypothalamus. Chromosomal mapping indicates that BMCP1 is located on chromosome X of mice and at Xq24 in man. Expression of the protein in yeast strongly impaired growth rate. Analysis of respiration of total recombinant yeast or yeast spheroplasts and in particular of the relationship between respiratory rate and membrane potential of yeast spheroplasts revealed a marked uncoupling activity of respiration, suggesting that although BMCP1 sequence is more distant from the uncoupling proteins (UCPs), this protein could be a fourth member of the UCP family.

Thermogenic brown fat mitochondria are characterized by a mitochondrial uncoupling protein (UCP)1 (1, 2), recently renamed UCP1 (3). UCP1 is uniquely found in brown adipose tissue and mutant mice null for the UCP1 gene are unable to maintain a normal body temperature in a cold environment (4). Two other members of the uncoupling protein family, UCP2 and UCP3, were recently identified (3, 5–8). UCP2 mRNA is widely expressed in animal or human tissues (3, 5–8), whereas UCP3 mRNA is largely found in skeletal muscle (6–8). These novel UCPs may explain proton leaks measured in mitochondria from most tissues and contribute to the partial coupling of respiration to ADP phosphorylation that exists in mitochondria from most tissues (9). Previous Northern analysis of rodent brain RNA using UCP1 cDNA or UCP2 cDNA suggested the existence of another mRNA related to the family of uncoupling proteins.2 Here, we report the cloning and functional characterization of BMCP1, a novel member of the mitochondrial carrier family that appears to be expressed in brain and, to a lesser extent, in other tissues. Although the predicted sequence of this protein is less homologous to UCP1, UCP2, or UCP3, the functional analysis of the protein when expressed in yeast indicated its potential uncoupling activity and suggested that it could be a fourth member of the UCP family.

EXPERIMENTAL PROCEDURES

Materials—Enzymes were purchased from Appligene (Illkirch, France) and New England Biolabs (Ozyme, Montigny-le-Bretonneux, France). [32P]dATP was obtained from Amersham Pharmacia Biotech (Les Ulis, France) and from NEN Life Science Products. Purified oligonucleotides were purchased from Eurogentec (Seraing, Belgium).

Cloning of Human and Mouse BMCP1 cDNA—For the cloning of mouse BMCP1, a mouse brain cDNA library (catalog number ML5004, CLONTECH) was screened with 32P-labeled UCP1 and UCP2 cDNAs using standardized procedures. The selection of clones was confirmed using 32P-labeled insert from IMAGE clone 381344 obtained from the IMAGE Consortium and originating from human retina (GenBank™ accession number AA576077). A search in Unigene3 for uncoupling protein produced a set of expressed sequence tags that were annotated as similar to uncoupling proteins. Contig construction with the aid of further sequencing provided the information for primer design and cloning of human BMCP1. The IMAGE clone 381344 was the seed for

1 The abbreviations used are: UCP, uncoupling protein; FCCP, carbonyl cyanide p-trifluoromethoxyphenylhydrazone uncoupler; TPP+, tetraphenylphosphonium; contig, group of overlapping clones; PCR, polymerase chain reaction.
2 D. Sanchis, C. Fleury, F. Bouillaud, and D. Ricquier, unpublished data.
3 The World Wide Web address is http://www.ncbi.
BMCP1, a Brain Mitochondrial Carrier

FIG. 1. Sequence of mouse and human BMCP1. nBMCP1, mouse BMCP1 predicted amino acid sequence (GenBank™ accession number AF 076981); hBMCP1, human BMCP1 predicted sequence (GenBank™ accession number AF 076984). The alignment not shown) and shares 30% identity with the mitochondrial oxoglutarate carrier.

RESULTS AND DISCUSSION

Cloning of BMCP1 cDNA, Sequence of Predicted BMCP1 Protein in Mouse and Man, and Comparison with Other UCPs and Other Mitochondrial Carriers—A mouse brain cDNA library was screened using mouse UCP1 and mouse UCP2 cDNA as probes. A number of candidates clones were further screened using the human expression sequence tag IMAGE clone 381344 (see “Experimental Procedures”). This expressed sequence tag was similar but not identical to hUCP1, hUCP2, or hUCP3. The screening led to the cloning of a mouse cDNA referred to here as BMCP1 (brain mitochondrial carrier protein-1). The full-length cDNA of human BMCP1 was generated as described under “Experimental Procedures.” The predicted amino acid sequence of mouse and human BMCP1 is given in Fig. 1. Mouse and human BMCP1 are highly similar and share a level of identity of 97%. The predicted sequence of the mouse protein is 322 amino acids (calculated molecular mass, 36,019 daltons), and the predicted sequence for the human protein is 325 residues. The BMCP1 sequence shows the three motifs characteristic for the tripartite mitochondrial carriers (boxed in Fig. 1) and also predicts the existence of six transmembrane domains (not shown). Differences between the human and mouse sequences at amino acids 23–25 (VSG) are probably due to sequence polymorphisms, because we also identified human BMCP1 cDNA, which lacks the corresponding 9-base pair VSG motif. The levels of identity between BMCP1 and UCP1, UCP2, and UCP3 are 34, 38, and 39%, respectively. Therefore, the predicted BMCP1 sequence is less homologous to the other animal UCPs, which share 60–70% identity. BMCP1 sequence is 38% identical to the plant Solanum tuberosum UCP sequence (16). A difference between BMCP1 predicted sequence and the other UCPs is in the N-terminal amino acid residues in BMCP1 that are absent in UCP1, UCP2, and UCP3. This N-terminal sequence is significantly distant from known motifs implicated in the targeting of mitochondrial precursors to mitochondria.

Northern Blot Analysis—Mouse (4-month-old B6D2 fed female) and rat (8-week-old lean Zucker fed male) multiple tissue blots were made from RNA prepared in the laboratory from different tissues using the guanidinium thiocyanate procedure. A membrane containing 2 µg of mRNA from human tissues was purchased from CLONTECH. Hybridization and washing procedures were conducted as described previously (3).

In Situ Hybridization Analysis—Three mice were intracardially perfused with paraformaldehyde. The brains were removed and cut using a sliding microtome. 25-µm-thick sections were collected and mounted onto poly-L-lysine coated slides. The brain sections were then hybridized as described previously (11) with mouse BMCP1 sense and antisense cRNA probes. These BMCP1 cRNA probes were generated from the 979-base pair clone: sense 5'-TGTCCTCTCTCTCCCCACAG-3'; antisense 5'-TGTCCTCTCTCTCCACAG-3'. The PCR primers used were: 94°C for 1 min and 30 cycles of 94°C for 30 s and 68°C for 2 min. After characterization and complete sequencing of rapid amplification of cDNA ends products, the full-length cDNA was generated using the Advantage high fidelity PCR kit, the human brain Marathon-Ready cDNA library (both from CLONTECH), and the following PCR primer pair: sense 5'-TGTCCTCTCTCTCCACAG-3'; antisense 5'-CCACCGACACACACACAG-3'. The PCR conditions used were: 94°C for 1 min and 30 cycles of 55°C for 30 s and 72°C for 3 min. Northern Blot Assay of BMCP1 Activity in Yeast—Yeast transfections and functional analysis using flow cytometry were carried out as described previously (3, 12). Briefly, the diploid yeast (Saccharomyces cerevisiae) strain W303 was used for expression of BMCP1 or oxoglutarate carrier in the yeast expression vector pYeDP. Transformants were selected for uracil auxotrophy. Yeast strains were plated on minimal medium with the appropriate nutritional requirements. Yeast strains were grown in lactate minimum medium as described (13). Expression was made with an oxygen electrode; measurement of mitochondrial respiration was obtained in presence of oligomycin at 10 µg/ml. Under these conditions, respiration was 10-fold less in heart, skeletal muscle, gut, lung, kidney, uterus, testis, and adipose tissues of mice, whereas no expression was measured in liver of mice. However, relative to the brain, the levels of expression of BMCP1 mRNA in other tissues of mice (quantitated using a PhosphorImager) were 13-fold less in heart, 28-fold less in muscle, 9-fold less in gut, 7.5-fold less in lung, 31-fold less in spleen, 7-fold less in kidney, 10-fold less in uterus, 7-fold less in testis, 9-fold less in perivascular fat, and 30-fold less in brown adipose tissue. A weak high.
expression of BMCP1 mRNA was observed in lung, adrenals, gonadal fat, ovary, heart, and kidney of rats. In human tissues, a clear signal was obtained in brain using Northern analysis. Some expression was also noticed in human testis and pituitary using a dot blot containing RNA from 50 different human tissues and purchased from CLONTECH (data not shown).

In Situ Hybridization Analysis of BMCP1 mRNA in Brain—Fig. 3 demonstrates the distribution of BMCP1 mRNA at the level of the tuberal region of the mouse hypothalamus. The expression was particularly abundant in the cortex, the hippocampus, the thalamus, the amygdala, and the hypothalamus. This distribution substantially differs from that of UCP2 mRNA (11) in that it is more ubiquitous. The exact location of cells expressing BMCP1 mRNA remains to be delineated.

Effect of BMCP1 on Growth Rate of Yeast—To examine the activity of BMCP1 in mitochondria and test for possible functional uncoupling activity, BMCP1 protein was expressed in yeast as previously reported for UCP1 (12, 13) or UCP2 (3). Upon induction of BMCP1 expression, the growth rate of yeast was significantly reduced relative to the vector control, whereas induction of expression of the mitochondrial oxoglutarate carrier had no effect (Fig. 4). BMCP1 expression increased the instantaneous generation time measured in liquid culture (241 ± 3 min, n = 5) when compared with yeast expressing no recombinant protein (185 ± 2 min, n = 5, p < 0.001, Student’s t test). A similar inhibition of growth was observed in yeast overexpressing UCP1 or UCP2 (3, 12, 13).

FIG. 3. In situ hybridization analysis of BMCP1 mRNA in brain. Film autoradiograms of coronal brain sections hybridized with radiolabeled sense (A) and antisense (B) riboprobes. The sections were taken at the level of the ventromedial hypothalamic nucleus. At this level, the intensity of the hybridization signal was strong and visible in many regions. The scale bar corresponds to 2.0 mm. Amyg, amygdala; DM, dorsomedial hypothalamic nucleus; Hipp, hippocampus; PV, paraventricular thalamic nucleus; MD, mediodorsal thalamic nucleus; VMH, ventromedial hypothalamus.
side of Fig. 6A show that addition of FCCP stimulated 3.1-fold
the respiratory activity of control spheroplasts, whereas it
stimulated only 1.8-fold the respiration of BMCP1 sphero-
plasts. This result was consistent with several experiments
where we used different preparations of spheroplasts corre-
sponding to independent cultures of yeasts, as well as inde-
pendent transformations of yeast to rule out the eventuality of
a bias due to the recipient cells. The respiratory control ratio
values (defined as the ratio between respiratory rate in pres-
ence of FCCP, and respiratory rate in state 4 of respiration) of
spheroplasts isolated from yeast overexpressing BMCP1 or not
overexpressing BMCP1 were 2.02 \(\pm 0.08 \) (\(n = 17 \)) and 3.73
\(\pm 0.22 \) (\(n = 26 \)), respectively (mean \(\pm \) S.E., \(p < 0.001 \), Student’s
t test). These data confirmed a lower coupling of respiration in
yeast expressing BMCP1 compared with control yeast.

Nicholls (17) and Brand et al. (18) have shown that the
measurement of the force/flux relationship between mitochon-
drial membrane potential and state 4 respiratory rate (in pres-
ence of oligomycin, i.e. in nonphosphorylating mitochondria)
undoubtedly demonstrates and quantifies proton leaks through
inner mitochondrial membrane. This method was applied to
yeast spheroplasts. To obtain curves reported in Fig. 6B,

FIG. 6. Functional activity of mouse BMCP1 expressed in
yeasts: analysis of respiratory rate and mitochondrial mem-
brane potential using yeast spheroplasts. A, simultaneous record-
ing of mitochondrial membrane potential (biphasic curves) and oxygen
consumption (lines) of control (pYeDP plasmid) or BMCP1 yeast sphero-
plasts. Mitochondrial membrane potential was estimated from uptake of
TPP \(^{+} \) (x axis, TPP \(^{+} \) uptake is proportional to the mitochondrial
membrane; see “Experimental Procedures”). Respiratory rate was
measured using an oxygen electrode (the numbers along the respiratory
traces correspond to nmol O\(_2\)/min/mg protein). N, NADH (6 mM, respi-
ratory substrate); A, ADP (2 mM); O, oligomycin (10 \(\mu \)g/ml); F, FCCP (7
\(\mu \)M). The two traces on the right-hand side of the figure show the
respiratory traces of control or BMCP1 spheroplasts used to perform
the experiment shown in panel B; the exact values of respiratory control
ratio corresponding to the curves shown are 3.1 and 1.78 for pYeDP and
BMCP1 spheroplasts, respectively.

Nicholls (17) and Brand et al. (18) have shown that the
measurement of the force/flux relationship between mitochon-
drial membrane potential and state 4 respiratory rate (in pres-
ence of oligomycin, i.e. in nonphosphorylating mitochondria)
undoubtedly demonstrates and quantifies proton leaks through
inner mitochondrial membrane. This method was applied to
yeast spheroplasts. To obtain curves reported in Fig. 6B,
amounts of control and BMCP1 permeabilized spheroplasts were normalized to assume the same FCCP uncoupled maximal respiratory rate. Thus it is likely that the same quantity of mitochondria reflected by the same maximal activity of the respiratory chain was present. Data shown in Fig. 6B were obtained in presence of oligomycin, and NADH oxidation was progressively slowed by potassium cyanide titration according to published protocols (Refs. 17 and 18 and see “Experimental Procedures”). As the rate of substrate oxidation decreases, the membrane potential (recorded with a TTP⁺ electrode in conditions where TTP⁺ uptake is proportional to membrane potential, the mean component of the protonmotive force) and the proton motive force decrease. The comparison of the force/flux curves of BMCP1 spheroplasts with control spheroplasts shows an enhanced respiratory rate regardless of the value of membrane potential. The decreased membrane potential associated with increased respiratory rate in BMCP1 spheroplasts suggested out the possibility that our observations might be due to an artificial consequence of a lower mitochondrial content. According to Nicholls (17) and Brand et al. (18), these data demonstrate that BMCP1 expression induced an uncoupling of mitochondrial respiration in recombinant yeast and indicate that addition of BMCP1 to mitochondria increased a proton leak.

On the basis of such data, it may be proposed that BMCP1 participates to the mitochondrial proton leak measured in brain mitochondria (19). Whether BMCP1 modulates the efficiency of respiration in certain brain cells in vivo remains to be investigated. In preliminary experiments we tested the hypothesis of a regulation of BMCP1 activity in yeast by fatty acids or nucleotides that are known activators or inhibitors of UCP1 (1) and observed no effect. The possible regulation of BMCP1 activity by particular ligands will be investigated. Actually, an uncoupling activity of a mitochondrial carrier moderately homologous to the UCPs is not entirely surprising because it was proposed that the adenine translocator of mitochondria, which shares 30% identity with UCP1, UCP2, UCP3, or BMCP1, can mediate the uncoupling effect of fatty acids (20). Conversely, the data presented here do not rule out another activity of BMCP1.

Chromosomal Location—We determined the chromosomal location of BMCP1 in mice and humans. Both localizations are consistent with the presence of a single BMCP1 locus on the X chromosome. In humans a sequence tagged site (G23624) was derived from IMAGE clone 33681, GenBank™ accession number R44688, which is part of the human BMCP1 cluster. The transcript marker WI-13677 was mapped to human chromosome X between DXS1047 and DXS994, placing BMCP1 between 150 and 151 centimorgans on the human gene map (300.5 centiroentgens on the WI radiation hybrid map). The chromosomal location of mouse BMCP1 was determined in a well characterized C3H × Mus spretus backcross panel, as described previously (3). A restriction fragment length polymorphism was used to map mBMCP1 to the X chromosome at 12.5 centimorgans, co-incident with Gria3. This location predicts that the human homologue would be on the X chromosome at Xq24, which is the same location identified by sequence tagged site mapping. The mouse BMCP1 locus is included in the confidence intervals for two mouse quantitative trait loci for body weight. These quantitative trait loci were named body weights 1 and 2. BMCP1 may be a positional candidate for these body weight quantitative trait loci, although they are very broad, including most of the X chromosome. Interestingly, the ADP/ATP translocator-2 (ANT2) gene, which is also part of the same mitochondrial carrier family as BMCP1, has been mapped to Xq24. This suggests the possibility that BMCP1 and ANT2 may be duplicated genes with divergent functions.

In conclusion, we report here the cloning of cDNAs encoding a new mouse or human mitochondrial carrier protein that we propose to refer to as BMCP1. BMCP1 gene is located on chromosome X. On the basis of the predicted amino acid sequence, this new protein belongs to the family of mitochondrial carriers and is equally homologous to mitochondrial oxoglutarate carrier and UCPs. However, when it is expressed in yeasts, the detailed analysis of the relationship between the respiratory rate and the mitochondrial membrane potential indicates that BMCP1 behaves as a potent uncoupler of respiration. The predominant expression of BMCP1 in brain raises the question as to the physiological significance and specific role for BMCP1 in neurons, for example the possibility to modulate ATP/ADP ratio or level of reactive oxygen species.

Acknowledgments—We acknowledge the excellent technical assistance of M. F. Chapey and Dr. G. Durand for support during these studies.

REFERENCES