Use and misuse of modelling for projections of climate change impacts on crops and pastures

Jean-François Soussana\(^1\), Anne-Isabelle Graux\(^1\) and Francesco N. Tubiello\(^2\)

1. INRA, Grassland Ecosystem Research, Clermont-Ferrand, France
2. Joint Research Centre, European Commission, Ispra, Italy.
Outline

• Climate change and food supply
• Uncertainties in projections of impacts
• Modelling crops under elevated CO$_2$
• Extreme climate events
• Biotic interactions
• Perspectives
What is climate change?

Increase in the main greenhouse gases
 Carbon dioxide (CO$_2$)
 Methane (CH$_4$)
 Nitrous oxide (N$_2$O)

Changes in climate
 Temperature
 Precipitation
 Extreme events

Over the coming decades and centuries
Global increase in anthropogenic greenhouse gas emissions

Global greenhouse gas emissions covered by the Kyoto protocol have increased by 70% from 1970 to 2004.
Atmospheric CO$_2$ in the past

The last 400 '000 years

(Petit et al., 1999)
Global warming since 1880

(NASA, 2008)
Projected changes in annual water runoff

Frequency of severe summer droughts is likely to double over South Europe (Lehner et al., 2006)
The global food supply challenge

Crops cover ~ 1.5 billion ha, 10% of global ice-free land;
Pastures add another 2.5 billion ha; or 20%

The number of undernourished people has reached 1 billion for the first time ever (FAO, 2009)

Existing projections indicate that future population and economic growth will require a doubling of current food production:

Increase from 2 to 4 billion tons of grains annually.
Modelled climate change impacts on wheat yields: with or without adaptation

Increased frequency of heat stress, droughts, and floods negatively affect crop yields and livestock beyond the impacts of mean climate change, creating the possibility for surprises, with impacts that are larger, and occurring earlier, than predicted using changes in mean variables alone.

(IPCC, 2007)
1° Uncertainties in climate change projections for crops and pastures
From GHG emissions to climate change impacts

- Emission scenarios (GHG, aerosols)
- Emissions => Concentrations
- Climate models
 - Atmospheric Ocean Global Circulation Models (AOGCM)
- Downscaling
 - Range of socio-economic emission scenarios (SRES, IPCC)
 - Several methods for downscaling (e.g. anomalies, dynamics...)
- IMPACT MODELS
 - Crops, grasslands etc...
Crop & grassland models classification

<table>
<thead>
<tr>
<th>Empiric</th>
<th>Functional</th>
<th>Mechanistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually obtained from regressions between yields and local meteorological variables.</td>
<td>Based on laws and empirical relationships.</td>
<td>Based on the physical laws of the soil-water-plant-atmosphere continuum.</td>
</tr>
<tr>
<td>Valid only for the place and conditions where they were obtained.</td>
<td>Usable under many conditions, after local calibrations.</td>
<td>Theoretically valid to any meteorological, soil or crop conditions.</td>
</tr>
<tr>
<td>Few input data is required, generally available.</td>
<td>Standard information is required, available in many places.</td>
<td>Detailed input data is needed, generally not available.</td>
</tr>
</tbody>
</table>
Exemple of site based modelling: climate change impacts on forage DM yields in France

Mechanistic grassland model, PASIM;
Low emission scenario, A1B; climate model ARPEGE;
Downscaling by statistical disaggregation, Boé et al., 2006;
Low input long-term grassland; shallow soil.

(Graux et al., in preparation)
Projected wheat yields with downscaled scenarios: increased variability over time of wheat yield (grown after maize or rapeseed)

- **Toulouse**

- **Colmar**

Increased interannual variation has a negative impact *per se*
(Brisson et al., in preparation)
An uncertainty cascade

Emission scenarios (GHG, aerosols)

Emissions => Concentrations

Climate models

Downscaling

Impact models

Range of socio-economic emission scenarios. After 2050, climate projections vary with scenario

Ensemble of climate models: ⇒ Uncertainty~ range

Regional models: data assimilation for downscaling (statistical disaggregation)

Several methods for downscaling (e.g. anomalies, dynamics...)

Further uncertainties?

Uncertainties

(after Laurent Terray, CERFACS)
Climate change signal compared to sources of variability & uncertainty

Variance decomposition analysis:
interannual variability is used to scale variance of other factors

<table>
<thead>
<tr>
<th>Factors</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interannual variability</td>
<td>100.00</td>
</tr>
<tr>
<td>Management (intensive vs. extensive)</td>
<td>50.18</td>
</tr>
<tr>
<td>Climate change</td>
<td>6.03</td>
</tr>
<tr>
<td>SRES scenario</td>
<td>2.99</td>
</tr>
<tr>
<td>Downscaling method</td>
<td>2.61</td>
</tr>
<tr>
<td>GCM initialization</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Forage DM yield simulated by PASIM mechanistic model
Comparing two managements three IPCC SRES scenarios, two initializations of ARPEGE GCM model, three downscaling methods and

(Graux et al., in preparation)
Upscaling: simulated crop yield changes (%) by 2080s relative to 1961-1990
High emission scenario (IPCC A2), two climate models: (left) HadCM3, (right) ECHAM4, DSSAT crop model (Jones et al., 2003)

Map elaboration by EC JRC/IES. Livestock not considered

Extreme events captured? Constant CO₂ effect?

(EC PESETA project)
Modelling food insecurity by 2030

30% of farmers in developing countries are currently food-insecure (Lobell et al., 2008, Science)

Regional climate models ensemble, statistical approach of crop modelling

=> Climate change may decrease local yields while contributing to a global increase in commodity prices by 2030

High food insecurity
Large reduction in yield
+ Major crop

(Southern Africa region)

Empirical model
No CO$_2$ effect?

(Lobell et al., 2008, Science)
Scaling agro-economics from site to region?

Global AgroEcological Zones

Issues: World trade tends to dominate over physiological processes;
Economic models ‘too stable’

Socio-economic model

Validation? Uncertainty? Constant CO₂ effect?

2° Modelling crops and pastures under elevated CO$_2$
Functional vs. mechanistic crop models

Modules in STICS, a functional model
(Brisson et al., 2003, EJA)

Photosynthetic submodel in Oryza2000, a mechanistic model
(Van Ittersum et al., 2003, EJA)
Elevated CO$_2$ experiments (FACE, Free Air Carbon dioxide Enrichment)
Are grain yields well simulated under elevated CO$_2$?

Simulated vs. observed (FACE Maricopa) wheat grain yield data. Two CO$_2$ and two drought (well watered and water-stressed) treatments

(Tubiello and Ewert, 2002)
Simulated vs. observed CO$_2$ response ratio

Average simulated CO$_2$ response ratio is higher than observed by +0.1
Interactions between CO$_2$ and water stress are captured by most models

(same data as Tubiello and Ewert, 2002)
FACE studies: acclimation to elevated CO$_2$ of maximal carboxylation capacity

(Ainsworth et al., 2007, PCE)
Observed increase in WSC pools in laminae and sheath of perennial ryegrass monocultures under elevated CO$_2$ (mean of two N supplies)

(Casella and Soussana, 1997, J. Exp. Bot.)
Observed response to elevated CO$_2$ in *Lolium perenne* monocultures

Leaf area per unit root + shoot mass declines under elevated CO$_2$. This decline correlates with that in shoot N content.

CO$_2$ induced changes in N content, root fraction and reserve pools are not simulated by functional models.

(Soussana et al., 1996; Casella & Soussana, 1997; Calvet & Soussana, 2001)
Fixed response ratios to atmospheric CO$_2$ concentration in functional crop models

STICS model (similar responses for e.g. CERES, EPIC, AEZ)
Interaction between CO$_2$ and temperature on leaf photosynthesis
(Farquhar’s et al., 1980, biogeochemical model)

- CO$_2$ effect
- Optimum temp.

This interaction between CO$_2$ and temperature is not simulated by functional models

(Long et al., 1996)
Issues of scale in coupling with hydrology

Schematic view of lateral water flows in a river basin

Changes in hydrology will directly affect crops and grasslands
Coupled hydrology – crop models needed?

(Schulze, 2000, AGEE)
3° Modelling the impacts of extreme climate events
Summer 2003 heat and drought extreme

Lorraine, France, August 2003
Increased summer heat wave and drought by 2050

A) Number of consecutive days in a summer heat wave. Mean over 20 yrs

B) Number of consecutive dry days (<1 mm) during summer. Mean over 20 yrs

(ARPEGE model, M Déqué, CNRM, Météo France)
Warmer than warmest summer

Likelihood in percent of summer average temperature exceeding by 2090 highest observed temperature on record

(Battisti and Naylor, 2009, Science)
Projected 100 yr return levels for the end of century compared to currently observed

(Parey et al., 2008, Clim. Dyn.)
Temperature thresholds in wheat

Complex interactions between phenology and warming impacts
Missing in some crop models

(after Porter and Semenov, 2005)
Interactions between CO$_2$ and temperature for spikelets number in paddy rice

(Ziska and Bunce, 2007, N Phytol., after Matsui et al., 1997)
Simulated vs observed effect of a week at +10°C compared to a 28°C control in groundnut

(Wheeler et al., 2002)
Perennial grasses strategies under prolonged droughts

WHOLE PLANT
- Leaf growth
- Leaf senescence
- Photosynthesis
- Carbon Reserves
- Lamina turgescence
- Root growth

MERISTEMS
- Tissue hydration
- Carbon reserves
- Dehydrins
- Membranestability

STRATEGIES
- Growth maintenance
- Dehydration delay
- Dehydration tolerance
- Desiccation tolerance

How to model mortality vs reserves?

(after Volaire, 2008)
Drought survival vs. the duration and intensity of water stress

Theoretical relationships based on the hydraulic framework

(Mc Dowell et al., 2008, N Phytol.)
4° Modelling the role of biotic interactions and of pollutants
Role of pests, diseases and pollutants: reducing factors

(Van Ittersum et al., 2003, EJA)
Observed % reduction in seed yield as a function of competition from C$_3$ and C$_4$ weeds

(Ziska and Bunce, 2007, N Phytol.)
Response of pathogen growth rate to temperature and 1.5°C warming

(Harvell et al., 2002, Science)
Modelling pests and pathogens

- Forecasting models using climate variables can effectively predict outbreaks for some crop diseases.
 - Potato late blight (*Phytophora infestans*) is correctly forecasted 92% of years on the basis of number of days of rain,
 - Rice blast (*Pyricularia oryzae*) models based on temperature and moisture forecast when an epidemic will start and when to apply fungicide for optimal control.

- Coupling disease forecasting models with models predicting epidemic impacts on crop productivity under climate change is needed.

- The rate of adaptation and evolution is an important unknown in any prediction of climate impacts.

(Harvell et al., Science, 2002)
Projected increase in surface ozone concentration (ppb) by 2100

Present day
Increased anthropogenic interactions with climate ozone emissions change

(Zheng et al., 2008)
Scheme of interactions between vegetation, climate and ozone pollution

Interactions included in some global biosphere models (e.g. ORCHIDEE)

(Fuhrer, 2009, Naturwissenschaft)
Perspectives

• Improving climate change impact projections will require a major effort combining:
 – Further crop/pasture model developments
 – Development of international data bases
 – Extensive model-data and model-model intercomparison
 – New generation of CO$_2$ experiments (Ainsworth et al., 2008) and of climate change experiments
 – Setting quality standards for an ensemble of crop and pasture models used for generating projections

• Bridging contrasted scales (from field to global) implies coupling crop & pasture models with:
 – soil biota models,
 – hydrology models,
 – disease spread, weed dispersion models,
 – Atmospheric pollution models
 – Farm scale adaptation models
 – Socio-economic models
Thank you