A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the {alpha}-proteobacterial mitochondrial ancestor. - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Molecular Biology and Evolution Année : 2009

A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the {alpha}-proteobacterial mitochondrial ancestor.

Résumé

Mitochondria play a key role in the life and death of eukaryotic cells, yet the full spectrum of mitochondrial functions is far from being fully understood, especially in photosynthetic organisms. To advance our understanding of mitochondrial functions in a photosynthetic cell, an extensive proteomic survey of Percoll-purified mitochondria from the metabolically versatile, hydrogen-producing green alga Chlamydomonas reinhardtii was performed. Different fractions of purified mitochondria from Chlamydomonas cells grown under aerobic conditions were analyzed by nano-liquid chromatography-electrospray ionization-mass spectrometry (MS) after protein separation on SDS-PAGE or on blue-native (BN)-PAGE. Of the 496 non-redundant proteins identified, 149 are known or predicted to reside in other cellular compartments and were thus excluded from the molecular and evolutionary analyses of the Chlamydomonas proteome. The mitochondrial proteome of the photosynthetic alga reveals important lineage-specific differences with other mitochondrial proteomes, reflecting the high metabolic diversity of the organelle. Some mitochondrial metabolic pathways in Chlamydomonas appear to combine typical mitochondrial enzymes and bacterial-type ones whereas others are unknown among mitochondriate eukaryotes. The comparison of the Chlamydomonas proteins to their identifiable homologs predicted from 354 sequenced genomes indicated that Arabidopsis is the most closely related non-algal eukaryote. Furthermore, this phylogenomic analysis shows that free-living alpha-proteobacteria from the metabolically versatile orders Rhizobiales and Rhodobacterales better reflect the gene content of the ancestor of the chlorophyte mitochondria than parasitic alpha-proteobacteria with reduced and specialized genomes.
Fichier non déposé

Dates et versions

hal-00379906 , version 1 (29-04-2009)

Identifiants

Citer

Ariane Atteia, Annie Adrait, Sabine Brugière, Marianne Tardif, Robert van Lis, et al.. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the {alpha}-proteobacterial mitochondrial ancestor.. Molecular Biology and Evolution, 2009, 26, pp.1533 - 1548. ⟨10.1093/molbev/msp068⟩. ⟨hal-00379906⟩
155 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More