Temporal sampling helps unravel the genetic structure of naturally occurring populations of a phytoparasitic nematode. 1. Insights from the estimation of effective population sizes - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Evolutionary Applications Année : 2016

Temporal sampling helps unravel the genetic structure of naturally occurring populations of a phytoparasitic nematode. 1. Insights from the estimation of effective population sizes

Résumé

The sustainability of modern agriculture relies on strategies that can control the ability of pathogens to overcome chemicals or genetic resistances through natural selection. This evolutionary potential, which depends partly on effective population size (Ne), is greatly influenced by human activities. In this context, wild pathogen populations can provide valuable information for assessing the long-term risk associated with crop pests. In this study, we estimated the effective population size of the beet cyst nematode, Heterodera schachtii, by sampling 34 populations infecting the sea beet Beta vulgaris spp. maritima twice within a one-year period. Only 20 populations produced enough generations to analyze the variation in allele frequencies, with the remaining populations showing a high mortality rate of the host plant after only one year. The 20 analyzed populations showed surprisingly low effective population sizes, with most having Ne close to 85 individuals. We attribute these low values to the variation in population size through time, systematic inbreeding, and unbalanced sex- ratios. Our results suggest that H. schachtii has low evolutionary potential in natural environments. Pest control strategies in which populations on crops mimic wild populations may help prevent parasite adaptation to host resistance.
Fichier principal
Vignette du fichier
eva12352.pdf (1 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

hal-01250775 , version 1 (05-01-2016)

Licence

Paternité

Identifiants

Citer

Pierre-Loup Jan, Cécile Gracianne, Sylvain Fournet, Eric Olivier, Jean-François Arnaud, et al.. Temporal sampling helps unravel the genetic structure of naturally occurring populations of a phytoparasitic nematode. 1. Insights from the estimation of effective population sizes. Evolutionary Applications, 2016, 9 (3), pp.489-501. ⟨10.1111/eva.12352⟩. ⟨hal-01250775⟩
204 Consultations
221 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More