Decrease in the genotoxicity of metal-contaminated soils with biochar amendments - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Environmental Science and Pollution Research Année : 2017

Decrease in the genotoxicity of metal-contaminated soils with biochar amendments

Résumé

Biochar amendments, i.e., the solid product of biomass pyrolysis, reduce soil metal availability, which may lower the toxicity of metal-contaminated soils. A direct link between the decrease in soil metal availability and improved plant development is however often difficult to establish, as biochar may induce undesirable side effects on plant growth, e.g., a modification to plant nutrition. In order to investigate toxicity processes at a cellular level, roots of Vicia faba were exposed for 7 days to three metal-contaminated substrates and one control soil, amended with a 0 or 5% (w/w) addition of a wood-derived biochar. Exposure to pure biochar was also tested. Root tip cells were then observed to count the number of micronuclei as an estimation of DNA damage and the number of cells at mitosis stage. Results showed that biochar amendments led to a significant decrease in soil metal availability (Cd, Cu, Ni, Pb, and Zn) and to enhance root development on acidic substrates. The micronucleus frequency in root tip cells was positively correlated and the number of mitotic cells negatively, to the extractability of Zn in soils and to the concentration of Zn in secondary roots. Exposure to pure biochar caused a lower production of roots than most soil substrates, but led to the lowest number of observed micronuclei. In conclusion, biochar amendments can reduce the genotoxicity associated with the presence of metallic contaminants in soils, thereby potentially improving plant growth.
Fichier non déposé

Dates et versions

hal-01865610 , version 1 (31-08-2018)

Identifiants

Citer

Frédéric Rees, Adrien Dhyèvre, Jean-Louis Morel, Sylvie Cotelle. Decrease in the genotoxicity of metal-contaminated soils with biochar amendments. Environmental Science and Pollution Research, 2017, 24 (36), pp.27634-27641. ⟨10.1007/s11356-017-8386-x⟩. ⟨hal-01865610⟩
54 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More