Uncovering the potential of termite gut microbiome for lignocellulose bioconversion in anaerobic batch bioreactors - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Frontiers in Microbiology Année : 2017

Uncovering the potential of termite gut microbiome for lignocellulose bioconversion in anaerobic batch bioreactors

Résumé

Termites are xylophages, being able to digest a wide variety of lignocellulosic biomass including wood with high lignin content. This ability to feed on recalcitrant plant material is the result of complex symbiotic relationships, which involve termite-specific gut microbiomes. Therefore, these represent a potential source of microorganisms for the bioconversion of lignocellulose in bioprocesses targeting the production of carboxylates. In this study, gut microbiomes of four termite species were studied for their capacity to degrade wheat straw and produce carboxylates in controlled bioreactors. All of the gut microbiomes successfully degraded lignocellulose and up to 45% w/w of wheat straw degradation was observed, with the Nasutitermes ephratae gut-microbiome displaying the highest levels of wheat straw degradation, carboxylate production and enzymatic activity. Comparing the 16S rRNA gene diversity of the initial gut inocula to the bacterial communities in lignocellulose degradation bioreactors revealed important changes in community diversity. In particular, taxa such as Spirochaetes and Fibrobacteres that were highly abundant in the initial gut inocula were replaced by Firmicutes and Proteobacteria at the end of incubation in wheat straw bioreactors. Overall, this study demonstrates that termite-gut microbiomes constitute a reservoir of lignocellulose-degrading bacteria that can be harnessed in artificial conditions for biomass conversion processes that lead to the production of useful molecules.
Fichier principal
Vignette du fichier
fmicb-08-02623.pdf (1.32 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01886494 , version 1 (21-06-2019)

Licence

Paternité

Identifiants

Citer

Lucas Auer, Adèle Lazuka, David Sillam-Dussès, Edouard Miambi, Michael O'Donohue, et al.. Uncovering the potential of termite gut microbiome for lignocellulose bioconversion in anaerobic batch bioreactors. Frontiers in Microbiology, 2017, 8, 14 p. ⟨10.3389/fmicb.2017.02623⟩. ⟨hal-01886494⟩
68 Consultations
89 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More